BALASORE COLLEGE OF ENGINEERING AND TECHNOLOGY SUBJET-EMT (4th semester) By – R.K.Sahu

- When two vectors are perpendicular, Then their

 [a) Dot product is zero b) Cross product is zero c) Both are zero d) Bothare not zero
- 2. The cross product of the vectors 3i + 4j 5k and -i + j 2k is,

a) 3i - 11j + 7k b) -3i + 11j + 7k c) -3i - 11j - 7k d) -3i + 11j - 7k

- Which of the following are not vector functions in Electromagnetics ?

 a) Gradient b) Divergence c) Curl [d) There is no non- vector functions in Electromagnetics
- 4. The work done of vectors force F and distance d, separated by angle θ can be calculated using,
 - a) Cross product [b) Dot product c) Addition of two vectors d) Cannot be calculated
- 5. The dot product of two vectors is a scalar. The cross product of two vectors is a vector. State True/False.
 - [a) True b) False
- 6. Which of the Pythagorean Theorem is valid in Electromagnetics?
 a) |dot product| + |dot product| = 1 b) |cross product| |cross product| = 1 [c[) |dot product|² + |cross product|² = 1 d) |dot product| + |cross product| = 0
- 7. The distance vector is obtained in
 a) Cartesian coordinate system
 b) Spherical coordinate system
 c) Circular coordinate system
 [d) Space coordinate system
- 8. The divergence of distance vector is
 - a) 0 [b) 3 c) 2 d) 1
- Find a vector normal to a plane consisting of points p1(0,1,0), p2(1,0,1) and p3(0,0,1)

a)
$$-j-k$$
 b) $-i-j$ c) $-i-k$ d) $-i-j-k$

- 10. The polar form of Cartesian coordinates is
 - [a) Circular coordinates b) Spherical coordinates
 - c) Cartesian coordinates d) Space coordinates
- 11. he work-electric field relation is given by
 - a) Volume integral b) Surface integral
 - [c) Line integral d) Relation impossible
- 12. The distance vector can be used to compute which of the following?
 - a) Dot product b) Cross product
 - [c) Unit normal vector d) Area
- 13. Find the projection of A on B. Given A = 10j + 3k and B = 4j + 5k.
 - a) 6 [b) 6.25 c) 6.5 d) 6.75

- 14. The vector product of two vectors is given by area of the parallelogram. State True/False.
 - [a) True b) False
- 15. The del operator is called as
 - a) Gradient b) Curl c) Divergence [d) Vector differential operato
- 16. The relation between vector potential and field strength is given by
 - [a) Gradient b) Divergence c) Curl d) Del operator
- 17. The Laplacian operator is actuallya) Grad(Div V) [b) Div(Grad V) c) Curl(Div V) d) Div(Curl V)
- 18. The divergence of curl of a vector is zero. State True or False.
 - [a) True b) False
- 19. The curl of gradient of a vector is non-zero. State True or False.a) True [b) False
- 20. A vector is said to be solenoidal when its
 - [a) Divergence is zero b) Divergence is unity
 - c) Curl is zero d) Curl is unity
- 21. The magnetic field intensity is said to be
 - a) Divergent b) Curl free [c) Solenoidal d) Rotational
- 22. A field has zero divergence and it has curls. The field is said to be
 - a) Divergent, rotational [b) Solenoidal, rotational
 - c) Solenoidal, irrotational d) Divergent, irrotational
- 23. When a vector is irrotational, which condition holds good?
 - a) Stoke's theorem gives non-zero value [b) Stoke's theorem gives zero value
 - c) Divergence theorem is invalid d) Divergence theorem is valid
- 24. The Cartesian system is also called as
 - a) Circular coordinate system [b) Rectangular coordinate system
 - c) Spherical coordinate system d) Space coordinate system
- 25. The volume of a parallelepiped in Cartesian is

[a) dV = dx dy dz b) dV = dx dy c) dV = dy dz d) dV = dx dz

- 26. A charge is placed in a square container. The position of the charge with respect to the origin can be found by
 - a) Spherical system b) Circular system
 - [c) Cartesian system d) Space coordinate system
- 27. The scalar factor of Cartesian system is unity. State True/False.

[a) True b) False

28. The Cartesian coordinates can be related to cylindrical coordinates and spherical coordinates. State True/False.

[a) True b) False

- 29. Transform the vector A = 3i 2j 4k at P(2,3,3) to cylindrical coordinates
 [a) -3.6j 4k b) -3.6j + 4k c) 3.6j 4k d) 3.6j + 4k
- 30. The spherical equivalent of the vector B = yi + (x + z)j located at (-2,6,3) is given by a) (7,64.62,71.57) b) (7,-64.62,-71.57) c) (7,-64.62,71.57) [d) (7,64.62,-71.57)

31. 32. 33.	Convert the point $(3,4,5)$ from Cartesian to spherical coordinates [a) $(7.07,45^{\circ},53^{\circ})$ b) $(0.707,45^{\circ},53^{\circ})$ c) $(7.07,54^{\circ},63^{\circ})$ d) $(0.707,54^{\circ},63^{\circ})$ Spherical systems are employed in waveguides. State True/False a) True [b) False Find the Cartesian coordinates of B(4,25^{\circ},120^{\circ}) a) $(0.845, 1.462, 3.625)$ [b) $(-0.845, 1.462, 3.625)$		
	c) (-8.45, 2.462, 6.325) d) (8.45, 2.462, 6.325)		
	34 The area of sphere can be computed from the sphere volume. State True/False.[a) True b) False		
	35. The cylindrical coordinate system is also referred to asa) Cartesian system [b) Circular systemc) Spherical system d) Space system		
	36. A charge located at point p (5,30º,2) is said to be in which coordinate system a) Cartesian system [b) Cylindrical system		
	c) Spherical system d) Space system		
	 38Cylindrical system is employed in waveguides. State True/False. [a) True b) False 39 Charges filled inside a cylindrical will possess flux in which direction? a) Upwards b) Downwards [c) Laterally outwards d) Inwards 		
	40 Gradient of a function is a constant. State True/False. a) True [b) False		
	41.The mathematical perception of the gradient is said to be a) Tangent b) Chord [c) Slope d) Arc		
	43. Divergence of gradient of a vector function is equivalent to[a) Laplacian operation b) Curl operationc) Double gradient operation d) Null vector		
	44 .The gradient of xi + yj + zk is a) 0 b) 1 c) 2 [d) 3		
	45. Curl of gradient of a vector isa) Unityb) Zero[c) Null vectord) Depends on the constants of the vector		
	45. The gradient can be replaced by which of the following?a) Maxwell equationb) Volume integral[c) Differential equationd) Surface integral		

46. When gradient of a function is zero, the function lies parallel to the x-axis. State True/False. [a) True b) False 47. The divergence of a vector is a scalar. State True/False. [a) True b) False 48. The divergence concept can be illustrated using Pascal's law. State True/False. b) False [a) True 49. Compute the divergence of the vector xi + yj + zk. a) 0 b) 1 c) 2 [d) 3 50.. Find the divergence of the vector yi + zj + xk. a) -1 [b) 0 c) 1 d) 3 51. Given $D = e^{-x} \sin y i - e^{-x} \cos y j$ Find divergence of D. c) 1 a) 3 b) 2 [d) 0 52. Find the divergence of the vector $F = xe^{x}i + yj - xzk$ [a) $(1 - x)(1 + e^{-x})$ b) $(x - 1)(1 + e^{-x})$ c) (1 - x)(1 - e) d) (x - 1)(1 - e)53. Determine the divergence of F = 30 i + 2xy j + $5xz^2$ k at (1,1,-0.2) and state the nature of the field. a) 1, solenoidal [b) 0, solenoid lc) 1, divergent d) 0, divergent 54. Find whether the vector is solenoidal, E = yz i + xz j + xy k[a) Yes. solenoidal b) No. non-solenoidal c) Solenoidal with negative divergence d) Variable divergence 55. Find the divergence of the field, $P = x^2yz i + xz k$ [b) 2xyz + x a) xyz + 2xc) xyz + 2zd) 2xyz + z56. Identify the nature of the field, if the divergence is zero and curl is also zero. a) Solenoidal, irrotational b) Divergent, rotational [c) Solenoidal, irrotational d) Divergent, rotational 57.. Find the potential between two points p(1,-1,0) and q(2,1,3) with E = 40xy i + 20x² j + 2 k a) 104 b) 105 [c) 106 d) 107 58. Find the potential between a(-7,2,1) and b(4,1,2). Given $E = (-6y/x^2)i + (6/x)j + 5k$. a) -8.014 b) -8.114 [c) -8.214 d) -8.314 59. The potential of a uniformly charged line with density λ is given by, $\lambda/(2\pi\epsilon) \ln(b/a)$. State True/False. [a) True b) False 60. A field in which a test charge around any closed surface in static path is zero is called a) Solenoidal b) Rotational c) Irrotational [d) Conservative 61. The potential in a lamellar field is a) 1 [b)0 c) -1 d) ∞ 62. Line integral is used to calculate a) Force b) Area c) Volume (d) Length

63. The energy stored in the inductor 100mH with a current of 2A is [a) 0.2 b) 0.4 c) 0.6 d) 0.8			
 64. An electric field is given as E = 6y²z i + 12xyz j + 6xy² k. An incremental path is given by dI = -3 i + 5 j - 2 k mm. The work done in moving a 2mC charge along the path if the location of the path is at p(0,2,5) is (in Joule) a) 0.64 (b) 0.72 (c) 0.78 (d) 0.80 65. The integral form of potential and field relation is given by line integral. State True/False (a) True (b) False 			
 66. If V = 2x²y - 5z, find its electric field at point (-4,3,6) a) 47.905 [b) 57.905 c) 67.905 d) 77.905 67 Gauss law for electric field uses surface integral. State True/False [a) True b) False 			
68. Surface integral is used to compute a) Surface [b) Area c) Volume d) density			
69. Coulomb's law can be derived from Gauss law. State True/ False [a) True b) False			
70 Evaluate Gauss law for D = $5r^2/4$ i in spherical coordinates with r = 4m and θ = $\pi/2$. a) 600 b) 599.8 [c) 588.9 d) 577.8			
71. Compute the Gauss law for D= $10\rho^{3}/4$ i, in cylindrical coordinates with ρ = 4m, z=0 and $z=5$			
а) 6100 п b) 6200 п c) 6300 п [d) 6400 п			
72. Compute divergence theorem for D= $5r^2/4$ i in spherical coordinates between r=1 and			
a) 80π b) 5π [c) 75π d) 85π			
73. Find the value of divergence theorem for $A = xy^2 i + y^3 j + y^2 z k$ for a cuboid given by $0 < x < 1$, $0 < y < 1$ and $0 < z < 1$. a) 1 b) 4/3 [c) 5/3 d) 2			
 74. The ultimate result of the divergence theorem evaluates which one of the following? a) Field intensity b) Field density c) Potential c) Charge and flux 75. Find the value of divergence theorem for the field D = 2xy i + x² j for the rectangular parallelepiped given by x = 0 and 1, y = 0 and 2, z = 0 and 3. a) 10 b) 12 c) 14 d) 16 			
76. If D = $2xy i + 3yz j + 4xz k$, how much flux passes through x = 3 plane for which $-1 < y < 2$ and $0 < z < 4$?			
77 Divergence theorem is based on [a) Gauss law b) Stoke's law c) Ampere law d) Lenz law 78. The Gaussian surface for a line charge will be			

 a) Sphere [b) Cylinder c) Cube d) Cube 79. The Gaussian surface for a point charge will be a) Cube b) Cylinder [c) Sphere 	oid d) Cuboid		
80. A circular disc of radius 5m with a surface charge surface. What is the net flux crossing the surface? a) 3 b) 2 c) 1 [d) 0	e density ρs = 10sinφ is enclosed by		
81. The total charge of a surface with densities 1,2, a) 11 b) 33 [c) 55 d) 77	,10 is		
 82. The work done by a charge of 10µC with a potential 4.386 is (in µJ) a) 32.86 (b) 43.86 c) 54.68 d) 65.68 83. The potential of a coaxial cylinder with charge density 1 unit , inner radius 1m and outer cylinder 2m is (in 10°) a) 12.74 b) 13.47 (c) 12.47 d) 13.74 84. Find the potential due to a charged ring of density 2 units with radius 2m and the point at which potential is measured is at a distance of 1m from the ring. a) 18π b) 24π c) 36π (d) 72π 85. Gauss law cannot be used to find which of the following quantity? a) Electric field intensity b) Electric flux density c) Charge[d) Permittivity 86. Gauss law for magnetic fields is given by a) Div(E) = 0 [b) Div(B) = 0 c) Div(H) = 0 d) Div(D) = 0 87. The given equation satisfies the Laplace equation. V = x² + y² - z². State True/False. (a) True (b) False 			
 88. In free space, the Poisson equation becomes a) Maxwell equation b) Ampere equation [c) Laplace equation d) Steady state 89. If Laplace equation satisfies, then which of the following statements will be true? a) Potential will be zero b) Current will be infinite c) Resistance will be infinite d) Voltage will be same 			
 90. Find the electric field of a potential function give a) -20 i - j b) -i -20 j c) i + j d) (91. When a material has zero permittivity, the maxim [a) ∞ b) -∞ c) Unity d) Zero 	on by 20 log x + y at the point (1,1,0). i + j)/20 num potential that it can possess is o		
 92. In free space, the charge carriers will be a) 0 b) 1 b) 1 c) 100 d) Infinity 93. In free space, which parameter will be unity? a) Permittivity b) Absolute permittivity c) Ref 94. Which parameter is unity in air medium? a) Permittivity b) Absolute permeability c) Ref 96. The conductivity in free space medium is a) Infinity b) Unity c) Zero d) Negative 97. The intrinsic impedance of free space is a) 489 b) 265 c) 192 d) 377 	lative permittivity d) Permeability ative permeability d) Permeability		

99In free space, the ratio of frequency to the velocity of light gives the phase constant. State True/False. [a) True b) False

100. The vectors of the electromagnetic wave propagation can be expressed in a) Dot product [b) Cross product c) Unit vector d) Perpendicular vector