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Module-1 Lecture-1

Introduction
Learning Objective:
1. Introduction

1.1 What is Artificial Intelligence?

1.2 Why we need AI?

1.3 What is intelligence in AI?

1.4 Advantages and Disadvantages of Al
1.5 Applications of Al

1. Introduction

1.1 What is Artificial Intelligence?

» It is the branch of computer science that emphasizes the developmentiof intelligence machines, thinking
and working like humans and able to make decisions. It is also known as"Machine Intelligence.

» According to the father of Artificial Intelligence, John!McCarthyy, it 3§ “The science and engineering of
making intelligent machines, especially intelligent computer ptegrams”.

» Artificial Intelligence is a way of making a computerjfa computer-controlled robot, or a software think
intelligently, in the similar manner the intelligent humanssthink.

» Al is accomplished by studying how human brain thinks and how humans learn, decide, and work while
trying to solve a problem, and then using the duteomes of this study as a basis of developing intelligent
software and systems.

1.2 Why we need AI?

» To create expert systems: The systems which exhibit intelligent behaviour with the capability to learn,
demonstrate, and explain and advice its users.

» To implement human intelligence in machines: Creating systems that understand, think, learn and behave
like humans. Helping machinesufind solutions to complex problems like humans do and applying them as
algorithms in a computer friendly manner.

1.3 What is intelligence in AI?

» The ability of a System to calculate, perceive relationships and analogies, learn from experience, store and
retrieve information, from memory, solve problems, use natural language fluently, classify and adapt new
situations.

»( The Intelligence is intangible.
» “Iti$ composed of

Reasoning

Learning

Problem solving
Perception

Linguistic intelligence




Reasoning: It is the set of processes that enables us to provide basis for judgement, making decisions, and
prediction.

Learning: It is the activity of gaining knowledge or skill by studying, practising, being taught, or
experiencing something. Learning enhances the awareness of the subjects of the study.

Problem solving: Problem solving also includes decision making, which is the process of selecting the
best suitable alternative out of multiple alternatives to reach the desired goal are available.

Perception: It is the process of acquiring, interpreting, selecting, and organizing sensory information.

e) Linguistic Intelligence: It is one’s ability to use, comprehend, speak, and write the verbal and\written
language.

1.4 Advantages and Disadvantages of Al

Advantages:

High Accuracy with less error: Al machines or systems are prone to less ertors and high accuracy as it
takes decisions as per pre-experience or information.

High-Speed: Al systems can be of very high-speed and fast-decision making.

High reliability: Al machines are highly reliable and can perform the,same action multiple times with
high accuracy.

Useful for risky areas: Al machines can be helpful in situations"such as,defusing a bomb, exploring the
ocean floor, where to employ a human can be risky.

Digital Assistant: Al can be very useful to provide digital assistant to the users such as Al technology is
currently used by various E-commerce websites to shewsthe prodtcts as per customer requirement.
Useful as a public utility: Al can be very useful for public utilities such as a self-driving car which can
make our journey safer and hassle-free, facialdrecegnition for security purpose, Natural language
processing to communicate with the humanyin human-language, etc.

Disadvantages:

>

>
>
>

High Cost: The hardware and seftware requitement of Al is very costly as it requires lots of maintenance
to meet current world requirements.

Can't think out of the box: Even we ate,making smarter machines with Al but still they cannot work out
of the box, as the robot will ofilyjdothat work for which they are trained, or programmed.
Unemployment

No feelings and emotions: Al machines can be an outstanding performer, but still it does not have the
feeling so it cannot make any-kind of emotional attachment with human, and may sometime be harmful
for users if the proper ¢are.s not taken.

Increase dependeney on'machines: With the increment of technology, people are getting more dependent
on devices and hence they are losing their mental capabilities.

No Original Creatiyity: As humans are so creative and can imagine some new ideas but still Al machines
cannot beat this/power of human intelligence and cannot be creative and imaginative.

1.5 Applications of Al

i. Gaming

ii. Natural language processing
iii. Expert systems

iv. Speech Recognition

v. Handwriting Recognition




vi. Intelligent robots

vii. Computer vision etc
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Learning Objective:

2. Agents in Artificial Intelligence
2.1 Agent
2.2 Intelligent Agent

2. Agents in Artificial Intelligence
2.1 Agent

» An agent is anything that can perceive its environment through sensors andiacts upon that environment
through actuators.
» An agent can be:

Human agent: A human agent has eyes, ears, and other organsAvhichiwork for sensors and hand, legs,
vocal tract and other body parts work as actuators.
Robotic Agent: A robotic agent can have cameras, gfifrared range finder, NLP for sensors and various
motors for actuators.
Software Agent: Software agent can have keystrokes, file contents, which act as sensors and display on
the screen, files etc act as actuators.

Before moving forward, we should first know.about sensors, effectors, and actuators.

Sensor: Sensor is a device which deteCtsithe change in\the environment and sends the information to other
electronic

Devices: An agent observes its environment through sensors.

Actuators: Actuators are the component of machines that converts energy into motion. The actuators are
only responsible for moving and centrolling a system. An actuator can be an electric motor, gears, break
etc.

Effectors: Effectors are the deévices which affect the environment. Effectors can be legs, wheels, arms,
fingers and display screen:

KAge nt Sensors e \

Percepts

JUAWUOIIAUF

Actions

& Actuators _/

Fig: Agents interact with environments through sensors and actuators.




2.2 Intelligent Agent

An intelligent agent is an autonomous entity which acts upon an environment using sensors and actuators
for achieving goals.

An intelligent agent may learn from the environment to achieve their goals. An intelligent agent is also
called as a rational agent which is one that does the right thing.

An intelligent agent can transform perception into actions rationally.

Following are the main four rules for an Al agent:

Rule 1: An Al agent must have the ability to perceive the environment.
Rule 2: The observation must be used to make decisions.

Rule 3: Decision should result in an action.

Rule 4: The action taken by an Al agent must be a rational action.
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Learning Objective:
3. Structure of an Agent

3. Structure of an Agent
The structure of an intelligent agent is a combination of architecture and agent program.
It can be viewed as:

Agent = Architecture + Agent program

Architecture: Architecture is machinery that an Al agent executes on.
Agent program: The agent function (f) for an artificial agent will be implementeddby an agént program. An
agent's behaviour is described by the agent function that maps any given perceptisequence to an action.
The agent function f maps from percept histories to actions:
f:P*—> A

The part of the agent taking an action on the environment is called amactuator.

Percept (Observations)

Agent Function

Environment

Fig: Structure of an Agent

Example:

Simple example-the vacuum-cleaner world: This particular world has just two locations: squares A and B.
The vacuum agent perceives which square it is in and whether there is dirt in the square. It can choose to move
left, move right, suck up the dirt, or do nothing. One very simple agent function is the following: if the current
square is dirty, then suck, otherwise move to the other square. A partial tabulation of this agent function is
shown in below figure. An agent program that implements it which is mentioned below.
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A vacuum-cleaner world with just two locations.

Action

Percept sequence
[A, Clean] Right
[A, Dirty] Suck
[ B .Clean] Left
[ B.Dirty] Suck
[A.Clean],[ A Clean] Right
[AClean], [ A.Dirty] Suck

[A.Clean],[A.Clean],[ A.Clean] Right
[A.Clean],[A .Clean],[ A .Dirty] Suck

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

The agent program for a simple reflex agent in the two-state vacuum environ-
ment. This program implements the agent function tabulated in the above figure.




Module-1 Lecture-4

Learning Objective:
4. Agent Environments
4.1 Features of Environment

Agent Environments

4.
» An environment is everything in the world which surrounds the agent, but it is not a part of an agenyitself.
» An environment can be described as a situation in which an agent is present.

>

The environment is where agent lives, operate and provide the agent with something toisense.and act upon
it.

4.1 Features of Environment
An environment can have various features from the point of view of an agent.

1. Fully observable vs Partially Observable
2. Static vs Dynamic

3. Discrete vs Continuous

4. Deterministic vs Stochastic

5. Single-agent vs Multi-agent

6. Episodic vs sequential

7. Known vs Unknown

8. Accessible vs Inaccessiblé

1. Fully observable vs Partially Observable:

» Ifan agent sensor can sense or access-the complete state of an environment at each point of time then it is a
fully observable environment, else it is pastially observable.

» A fully observable environment is,€asy as there is no need to maintain the internal state to keep track history
of the world.

An agent with no sensors in all environments then such an environment is called as unobservable.

2. _Static vs Dynami¢:
» Ifan environment does not undergo any change especially when an agent is busy in performing a specific
task, then the’environment is said to be static otherwise it dynamic.

» Taxi driving is'an example of a dynamic environment whereas Crossword puzzles are an example of a
static environment.

3. Discrete vs Continuous:
» If in an environment there are a finite number of percepts and actions that can be performed within it,
then such an environment is called a discrete environment else it is called continuous environment.

» A chess game comes under discrete environment as there is a finite number of moves that can be
performed.

» A self-driving car is an example of a continuous environment.




4. Deterministic vs Stochastic:

>

>

5.

>

>

>

If an agent's current state and selected action can completely determine the next state of the environment,
then such environment is called a deterministic environment.
A stochastic environment is random in nature and cannot be determined completely by an agent.

Single-agent vs Multi-agent:

If only one agent is involved in an environment, and operating by itself then such an environment is
called single agent environment.

However, if multiple agents are operating in an environment, then such an environment is called amulti-
agent environment.

The agent design problems in the multi-agent environment are different from single agent environment.

6. Episodic vs Sequential:

In an episodic environment, there is a series of one-shot actions, and only the current percept is required
for the action.

In episodic the agent’s experience divided in to atomic episodes.

Next episode not dependent on actions taken in previous episode.

However, in Sequential environment (non episodic), an agent requines memory of past actions to
determine the next best actions.

7. Known vs Unknown:

Known and unknown are not actually a feature of an envirenment, but it is an agent's state of knowledge
to perform an action.

In a known environment, the results for all actions“are” known to the agent. While in unknown
environment, agent needs to learn how it works in\order to perform an action.

>

>

8. Accessible vs Inaccessible:

If an agent can obtain complete and accurate information about the state's environment, then such an
environment is called an Accessible environment else it is called inaccessible.

An empty room whose state ¢an‘be defined by its temperature is an example of an accessible
environment.

Information about an event lon.easth is an example of Inaccessible environment
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Learning Objective:

5. Good Behaviour: The Concept of Rationality
5.1 Rational Agent
5.2 Rationality
5.3 The Nature of Environments

5. Good Behaviour: The Concept of Rationality
5.1 Rational Agent

> A rational agent is an agent which has clear preference, models uncertainty, and.acts in a way to maximize
its performance measure with all possible actions.

> A rational agent is said to perform the right things.

> Al is about creating rational agents to use for game theory and decision’ theory for various real-world
scenarios.

» For an Al agent, the rational action is most important because in Al'seinforcement learning algorithm, for
each best possible action, agent gets the positive reward-and for each wrong action, an agent gets a negative
reward.

5.2 Rationality

> Rationality is concerned with expected actions and'results depending upon what the agent has perceived.
Performing actions with the aim of obtaifiing,uSeful information is an important part of rationality.

> The rationality of an agent is measured byits performance measure. Rationality can be judged on the basis
of following points:

= The performanceuneasures, which determine the degree of success.
= The agent’s prior knowledge about the environment.

= The actions/that the agent can perform.

= Agent’s Percept Sequence till now.

This leads to a definitiofi“of a rational agent:

> For each possible percept sequence, a rational agent should select an action that is expected to maximize
its performanceimeasure, given the evidence provided by the percept sequence and whatever built-in
knowledgé¢ the'agent has.

> Aratiofial agent always performs the right action, where the right action means the action that causes the
agent to'be most successful in the given percept sequence.

> Tt problem the agent solves is characterized by Performance Measure, Environment, Actuators, and
Sensors (PEAS).




5.3 The Nature of Environments

» To design a rational agent, we must specify the task environment.

» The performance measure, the environment, and the agent’s actuators and sensors are grouped as the task
environment, and called as PEAS (Performance measure, Environment, Actuators, Sensors).

Task Environment: PEAS for self-driving cars:

Let's suppose a self-driving car then PEAS representation will be:
Performance Measures: Safety, time, legal drive, comfort
Environment: Roads, other vehicles, road signs, pedestrian
Actuators: Steering, accelerator, brake, signal, horn
Sensors: Camera, GPS, speedometer, odometer, accelerometer, sonar:

PEAS for Medical Diagnose:

Performance Measures: Healthy patient, Minimized cost
Environment: Patient, Hospital, Staffs

Actuators: Tests, Treatements

Sensors: Keyboard (Entry of symptoms)

PEAS for Vacuum Cleaner:

Performance Measures: Cleanness, Efficieney, Battery life, Security
Environment: Room, Table, Wood floor, Catpet
Actuators: Wheels, Brushes; Vacuum Extractor

Sensors: Camera, Dirt detection sensor, Cliff sensor, Bump Sensor, Infrared Wall Sensor
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Learning Objective:

6. Types of Agents
6.1 Simple Reflex Agents
6.2 Model-Based Reflex Agents
6.3 Goal-Based Agents

6. Types of Agents
In artificial intelligence, agents are entities that sense their surroundings and act to accomplish predetermined
objectives. From basic reactive reactions to complex decision-making, these agents display“aswide range of

behaviours and skills.
Agents can be grouped into 5 classes based on their degree of perceived intelligence and capability. These are

given below :
Simple Reflex Agents
Model-Based Reflex Agents
Goal-Based Agents
Utility-Based Agents
Learning Agents

6.1 Simple Reflex Agents:

The Simple reflex agents are the simplest agents. These agents take decisions on the basis of the current
percepts and ignore the rest of the percept history. They have nointernal state or memory and respond instantly
to the current situation.

Example:- An automatic door sensor is a simple reflexqagent. When the sensor detects movement near the
door, it triggers the mechanism to épen. The rules: if movement is detected near the door, then open the
door. It does not consider any additionalycontext, such as who is approaching or the time of day, and will
always open whenever movement is sensed.

Percepts
"
/ Agent SenforSw \

What the world
is right now

h 4
Condition- What action |
action rules should do now

jJuaLLUONIAUT

Actuators
Actions
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6.2 Model-Based Reflex Agents:

Model-based agents are more sophisticated than simple reflex agents. These agents are capable of tracking the
situation and working in a partially observable environment.

A model-based agent has two important factors:

a) Model: It is knowledge about "how things happen in the world," so it is called a Model-based agent.
b) Internal State: It is a representation of the current state based on percept history.

These agents have the model, "which is knowledge of the world" and based on the model they perform actions.

Example:- A vacuum cleaner like the Roomba one that maps a room and remembers @bstacles like furniture.
It ensures cleaning without repeatedly bumping into the same spots.

Sensors <

v

JU3 WUOJIAU]

va Actions

6.3 Goal-Based Agents

Goal-based agents have predefined objectives or goals that they aim to achieve. By combining descriptions of
goals and models of the environment, these agents plan to achieve different objectives, like reaching particular
destinations. They use search and.planning"methods to create sequences of actions that enhance decision-
making in order to achieve goals. Goal-based agents differ from reflex agents by including forward-thinking
and future-oriented decision.making processes.

Example: A delivery robot tasked with delivering packages to specific locations. It analyzes its current
position, destination, availablesoutes, and obstacles to plan an optimal path towards delivering the package.
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Learning Objective:
6.4 Utility-Based Agents
6.5 Learning Agents

6.4 Utility-Based Agents

These agents are comparable to goal-based agents, but provide an extra component of utility measutement
which makes them different by providing a measure of success at a given state.
The Utility-based agent is useful when there are multiple possible alternatives, and an.agent has tg chdose in

order to perform the best action.

Example: An investment advisor algorithm suggests investment options by comsidering’ factors such as
potential returns, risk tolerance, and liquidity requirements, with the goal of maximizing the investor's long-

term financial satisfaction.

SR

Precepts
Sensors €
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What the world
is like now
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if I do action A
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What action |
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Utility

6.5 Learning Agents

In artificial intelligence, a learning agent is an agent that possesses the ability to learn from its past experiences.
It starts t6 act with basic knowledge and then able to act and adapt automatically through learning.
A learning agent has mainly four conceptual components, which are:
Learning element: It is responsible for making improvements by learning from environment
Critic: Learning element takes feedback from critic which describes that how well the agent is doing
with respect to a fixed performance standard.
Performance element: It is responsible for selecting external action

15| Page




Problem generator: This component is responsible for suggesting actions that will lead to new and
informative experiences.
Learning agents are able to learn, analyze performance, and look for new ways to improve the performance.
Examples:
Chatbots: AIML is frequently used to develop chatbots that can simulate conversation with users. These
chatbots use pattern matching to respond to user inputs. A classic example is the A.L.I.C.E (Artificial
Linguistic Internet Computer Entity) chatbot, which learns from user interactions to provide more afeurate
and helpful responses.

Recommendation Systems: AIML can also be used to create recommendation systems. These agents analyze
user preferences and behaviors to suggest products, services, or content. For instane€, an onling shopping
website might use an AIML-based learning agent to recommend items to customers based omutheir browsing

history and purchase patterns.
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Module-1 Lecture-8

Learning Objective:

7. Solving Problems By Search
7.1 Problem-Solving Agents
7.2 Formulating problems
7.3 Searching for Solutions

7.1 Problem-Solving Agents:

A problem is a set of information that the agent will utilize to make decisions. A problem-sélving-refers to a
state where we wish to reach to a definite goal from a present state or condition,

According to computer science, problem-solving is a part of artificial intelligenéey, which includes various
approaches including heuristics and algorithms.

There are some following steps which require to solve a problem:

a. Goal Formulation: It is the first step in problem solving and,based on*the current situation and the
agent’s performance measure.
b. Problem Formulation: It is the process of deciding,what actions,and states to consider, given a goal.

The process of looking for a sequence of actions that reaches the“goal is called search.

A search algorithm takes a problem as input.afid retusns\a solution in the form of an action sequence. Once a
solution is found, the actions it recommends,can beycarried out. This is called the execution phase.

Thus, we have a simple “formulategsearch, execute” design for the agent. After formulating a goal and a
problem to solve, the agent calls a search procedure to solve it.

It then uses the solution to guide its actions;udoing whatever the solution recommends as the next thing to do
typically, the first action of the sequence*and then removing that step from the sequence. Once the solution
has been executed, the agent will formulate a new goal.

function SIMPLE-PROBLEM-SOLVING-AGENT( percept) refurns an action
persistent: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE(stale, percept)
if seq is empty then
goal «— FORMULATE-GOAL(stale)
problem +— FORMULATE-PROBLEM(state, goal)
seq «— SEARCH( problem)
if seq = failure then return a null action
action «— FIRST(seq)
seq +— REST(seq)
return action
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Problem solving components

A problem can be defined formally by five components

i.  Initial state: The first component that describes the problem is the initial state that the agent starts in.
ii. Action: A description of the possible actions available to the agent. Given a particular state s,
ACTIONS(s) returns the set of actions that can be executed in s.
Transition Model: A description of what each action does; the formal name for this is the transition
model, specified by a function RESULT(s, a) that returns the state that results from doing action a in
state s. We also use the term successor to refer to any state reachable from a given state by a'single
action.
Together, the initial state, actions, and transition model implicitly define the state space of the problem.
The state space forms a directed network or graph in which the nodes are states and thelinks between
nodes are actions. A path in the state space is a sequence of states connected by a sequence of actions
iv.  Goal Test: It determines whether a given state is a goal state.

v.  Path Cost: A path cost function that assigns a numeric cost to each pathiyThe problem-solving agent
chooses a cost function that reflects its own performance measure.

Example problems: 8-puzzle,8-queens problem, The travelling salesmansproblem etc.

7.2 Formulating problems

The formulation is reasonable, but it is still a model, an abstract'mathematical description and not the real
thing.

The process of removing detail from a representation is calledwbSstraction.

7.3 Searching for Solutions

» A solution is an action sequence, so search algorithms work by considering various possible action
sequences.

» The possible action sequences starting at the initial state form a search tree with the initial state at the root;
the branches are actions and the nodes‘eorrespond to states in the state space of the problem.
Expanding the current state; that,ispapplying each legal action to the current state, thereby generating a
new set of states. The currgntistdte is the parent node, newly generated states are child nodes.
Leaf node is a node withwno childfen in the tree. The set of all leaf nodes available for expansion at any
given point is called the frontier.
The process of expanding,nodes on the frontier continues until either a solution is found or there are no
more states to expand.
Search algorithms all share this basic structure they vary primarily according to how they choose which
state to expand nextis called as search strategy.
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Module-1 Lecture-9

Learning Objective:
8. Searching
8.1 Uniformed Search
8.1.1 Breadth-first Search

. Searching
In AIML searching is the process of finding a solution or a path from an initial state to a-goal state, usually
within a search space.
A search space is essentially a set of all possible states or configurations of a system or.environment. In
Al, search is a key technique used for problems such as puzzle solving, pathfinding, decisionmaking, and
optimization.
Searching allows an agent or algorithm to explore various possible solutions in“an intelligent manner and
find the optimal or desired solution.
There are different types of search algorithms, mainly categorized into:
a) Uninformed Search (Blind Search)
b) Informed Search (Heuristic Search)

8.1.1 Uninformed Search (Blind Search):

The Uninformed Search is also called as Blind Search do nothave any additional information about the
goal beyond the initial state. These can also do is generategsucCcessors and distinguish a goal state from a
non-goal state.

They explore the search space systematiCally, without any heuristics to guide the search.

There present different types of uninformed.s€areh algorithms, they are

1) Breadth-first seareh

2) Depth-fitst search

3) Uniform-cost search

4) Depth-limited'search

5) Itetative deepening depth-first search
6), Bidirectional search

8.1.1 Breadth-first Search

> Breadth-first searchis the most common search strategy in which the root node is expanded first, then
all the successors'of the root node are expanded next, then their successors, and so on.

> Here all the nodes.are expanded at a given depth in the search tree before any nodes at the next level
are expanded.

» ‘Breadth:first search is an instance of the general graph-search algorithm in which the shallowest
unexpanded node is chosen for expansion. This is achieved very simply by using a FIFO queue for the
frontier. The new nodes go to the back of the queue, and old nodes, which are shallower than the new
nodes, get expanded first. There is one slight tweak on the general graph-search algorithm, which is
that the goal test is applied to each node when it is generated rather than when it is selected for
expansion.

» Thus, breadth-first search always has the shallowest path to every node on the frontier.
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Algorithm:

Step 1: Place the starting node on the queue.
Step 2: If the queue is empty, return failure and stop.
Step 3: If the first element on the queue is a goal node return success and stop. Otherwise,

Step 4: Remove and expand the first element from the queue and place all the children at the end of the.queue
in any order.

Step S: If queue is empty Go to Step 6 else go to step 3. ‘ b
Step 6: Exit.

Example:




®
Time Complexity: The Time Complexity of BFS algérithm 15O (b?).

ithm is O (b®).

Simplicity: This algorithm is easy to understand and implement using a queue.

Systematic Exploration Ex all nodes level by level, ensuring no node is missed within the
same depth before movm P

Wide Range of Appl FS is versatile, applied in areas like web crawling, social network
analysis, and Al- ba -solvmg

Disadvantages:

» High Me BFS requires storing all nodes at the current level in memory, which can grow

signifi ge or densely connected graphs.
» Slow e lutions: If the solution lies deep in the graph, BFS can become inefficient as it
e

e hallower nodes first.




Module-1 Lecture-10

Learning Objective:
8. Searching
8.1 Uniformed Search
8.1.2 Depth-first Search

8.1.2 Depth-first Search

> Depth First Search (DFS) algorithm is a recursive algorithm for searching all the vertices Of aygraph or
tree data structure. This algorithm traverses a graph in a depthward motion and uses a stack to remember
to get the next vertex to start a search, when a dead end occurs in any iteration.

» DFS uses a stack data structure for its implementation

Algorithm:

Step 1: PUSH the starting node into the stack.

Step 2: If the stack is empty then stops and return failure.

Step 3: If the top node of the stack is the goal node, then step and return success.

Step 4: Else POP the top node from the stack and process, it. Find,alkits neighbours that are in ready state and
PUSH them into the stack in any order.

Step S: If stack is empty Go to step 6 else Go to step 3.
Step 6: Exit
Example:

Let us take an example for implementing DFS algorithm.
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of A le Band C
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Q{\P 4% New € 18 4op node of the MMK,?W\ 4the nc.iah\;cub% "2 F and G

[elFla <

> & by -the dop aode of -the ook binl @3 neighbouris, ] e M

Now M 1 the top node and Bind ¥ Neighbowry of ™M 1n HAve
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" puaH them on to the Madk.

Velx(t] F
o L & the top node ok -he Aack , whicke 13 ourt %O“L node,
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— I .

Time Complexity: The*Time«Complexity of DFS algorithm is O (b%).
Space Complexifys The Space Complexity of DFS algorithm is O (b%).

Advantages:

>, DFS consumes very less memory space.
» Ttwill reach the goal node in a less time period than BFS if it traverses in a right path.
» It may find a solution without examining much of the search because we may get the desired solution

in the very first go.

Disadvantages:

» It is possible that many states keep reoccurring. There is no guarantee of finding the goal node.
» Sometimes the states may also enter into infinite loops.
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Module-1 Lecture-11

Learning Objective:
9. Searching
9.1 Informed(Heuristic) Search
9.1.1 Greedy best-first Search
9.1.2 A* Search

9.1 Informed(Heuristic) Search

» Informed search algorithms are a type of search algorithm that uses heuristic functions to guide the
search process.

» A heuristic function is a function that maps from problem state descriptions to measure of desirability
usually represented as number. The purpose of heuristic function is to guide the search process in the
most profitable directions by suggesting which path to follow first when,more,than is available.
Generally a term heuristic is used for any advice that is effective but is not guaranteed to work in every
case. For example in case of travelling sales man (TSP) problem w¢ are using a heuristic to calculate
the nearest neighbour. Heuristic is a method that provides a better guess about the correct choice to
make at any junction that would be achieved by random guessing. Thistechnique is useful in solving
though problems which could not be solved in any other,way. Solutions take an infinite time to
compute.

» There are different types of informed search techniquessare ‘present

Greedy Best-first Search/,Best first Search
A* Search

9.1.1 Greedy best-first Search/ Best/first-Search

> Best first search is an instance of graph searnch algorithm in which a node is selected for expansion
based on evaluation function f.(n). Traditienally, the node which is the lowest evaluation is selected
for the explanation because the-ewaluation measures distance to the goal.
Best first search can be implemented within general search frame work via a priority queue, a data
structure that will maintain the fringe in ascending order of f values.
It is the combination ofidepth first and breadth first search algorithm.
Best first search algorithm 1s often referred greedy algorithm this is because they quickly attack the
most desirable pathias soon as its heuristic weight becomes the most desirable.

Algorithm:

Step 1: Place the starting node or root node into the queue.

Step 2: If theygueue is empty, then stop and return failure.

Step 3: If the first element of the queue is our goal node, then stop and return success.

Step 4: Else, remove the first element from the queue. Expand it and compute the estimated goal distance
for each child. Place the children in the queue in ascending order to the goal distance.

Step 5: Go to step-3
Step 6: Exit.
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Example:
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Time Complexity: The worst case time complexity of Greedy best first search is O(b™ ).

Space Complexity: The worst case space complexity of Greedy best first search is O(b™ ). Where, m is the
maximum depth of the search space.

Advantage:

» It is more efficient than that of BES and DFS.
» Time complexity of Best first searchyis much less than Breadth first search.

Disadvantages:

» It can behave as an ufiguided depth-first search in the worst case scenario.
» It can get stuck in‘a'loop as’DFS.
» This algorithm is‘hgt optimal.




Module-1 Lecture-12

Learning Objective:
9. Searching
9.1 Informed(Heuristic) Search
9.1.1 Greedy best-first Search
9.1.2 A* Search

9.1.2 A* Search
A* is a powerful graph traversal and pathfinding algorithm widely used in artificial intelligence and
computer science. This algorithm is a specialization of best-first search.
It is mainly used to find the shortest path between two nodes in a graph, givemthe estimated,cost of getting
from the current node to the destination node.
A* requires heuristic function to evaluate the cost of path that passes through the particular state. This
algorithm is complete if the branching factor is finite and every action has.fixed'eost. A* requires heuristic
function to evaluate the cost of path that passes through the particular state/It,can be defined by following
formula.

f(n) = g(n)+h(n)
Where,

f(n): The actual cost path from the start state'to the goal state.
g(n): The actual cost path feom the start state to the current state.

h(n): The actual cost path from'the current'state to goal state.

Algorithm:

Step-1: Place the starting node in.the OPEN list.
Step-2: If OPEN list is empty{then stop and return failure.

Step-3: Select the node frem the,OPEN list which has the smallest value of evaluation function (g+h), if node
n is goal node then retutn suceess and stop, otherwise.

Step-4: Expand node n'and generate all of its successors, and put n into the closed list. For every successor
n', check whethern" 1s,already in the OPEN or CLOSED list, if not then compute evaluation function for n'
and place into OPEN list:

Step 5: Elsejif node n' is already in OPEN and CLOSED, then it should be attached to the back pointer which
reflects the lowest g(n') value.

Step 6: Ré€turn to Step 2.




Example:-

Find the most cost effective path to reach from start state A to final state J using A* Algorithm.

Ans:-

The numbers written on edges represent the distance between the nodes:
The numbers written on nodes represent the heuristic valtie.

Stap-1:

We start with node A. Node B and Node F can be reachedfrom node A.

Here we calculate f(B) and f(F) by using A#* Algorithm®

f(B) = 6+8=14
f(F) = 3+6=9
As f(F)<F(B), we go to node F
Path A =m F
Node G and node H can'b¢ rea¢hed from node F.
Here we calculates(G) and f(H)
flG) = (3+1)+5=9
f(H) = (3+7)+3=13
As f(G)<f(H), we go to node G.
Path A == F=m G
Step-3:
Node I can be reached from node G.
Here we calculate f(I)

f(l)= (3+1+3)+1=8
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Here we go to node I
Path A == Fump G == |
Step-4:
Node E,H and J can be reached from node I.
We calculate f(E),f(H) and f(J)
f(E) = (3+1+3+5)+3=15
f(H) = (3+1+3+2)+3=12
f(J) = (3+1+3+3)+0 =10
As f(J) is least, go to node J.
Path A == Fump G mmp | = |
Time Complexity: The time complexity of A* search algorithm is O (b*d).
Space Complexity: The space complexity of A* search algorithm is Obd).

Advantages:

» A* search algorithm is the best algorithm than ether search algorithms.
» A¥* search algorithm is optimal and complete.
» This algorithm can solve very complex problems.

Disadvantages:

It does not always produce the shortest path as it 1s mostly based on heuristics and approximation.

A* search algorithm has some ¢emplexity issues.

The main drawback of A* is memeory requirement as it keeps all generated nodes in the memory, so it
is not practical for variousdargesscale problems.
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Learning Objective:
10. Constraint Satisfaction Problems (CSP)
10.1 Crypt Arithmetic Problem

10. Constraint Satisfaction Problems (CSP)

Constraint Satisfaction Problems (CSP) play a crucial role in artificial intelligence (Al) as lit splves vatious
problems that require decision-making under certain constraints. CSPs represent a clas$ of probléms.where
the goal is to find a solution that satisfies a set of constraints. These problems are commonly encountered in
fields like scheduling, planning, resource allocation, and configuration.

A constraint satisfaction problem consists of three components, X, D, and C:

X is a set of variables, {X1,...,Xn}.

D is a set of domains, {D1,...,Dn}, one for each variable.

C is a set of constraints that specify allowable combinations of value.

Popular Problems with CSP

The following problems are some of the popular problems that cari'be solved using CSP:

1. Crypt Arithmetic Problem (Coding alphabets to numbers.)
2. n-Queens Problem

3. Sudoku

4. Map Coloring

5. Crossword

10.1 Crypt Arithmetic Problem

Cryptarithmetic Problem is a typ€ 6f comstraint satisfaction problem where the game is about digits and its
unique replacement either with, alphabets or other symbols. In cryptarithmetic problem, the digits (0-9) get
substituted by some possiblé‘alphabets or symbols. The task in cryptarithmetic problem is to substitute each
digit with an alphabet tosget the tesult arithmetically correct.

Rules:
The rules or constraints on a cryptarithmetic problem are as follows:

Thefe should be a unique digit to be replaced with a unique alphabet.

No two letters have same value.

The result should satisty the predefined arithmetic rules, 1.e., 2+2 =4, nothing else.

Digits should be from 0-9 only.

There should be only one carry forward, while performing the addition operation on a problem.
The problem can be solved from both sides, i.e., lefthand side (L.H.S), or righthand side (R.H.S)




Example:

Let’s understand the crypt arithmetic problem as well as it’s constraints better with the help of an example:

Step-1:

These alphabets are replaced by numbers such that all the constraints are satisfied.So initially we/have all
blank spaces.

We start from left most side, there we have left most symbol is : O

It is the letter which is generated by carrying. LETTER

So carry generated can be only one, so we have O=1.

When we are doing addition of n letters & result of adding

of letters is n+1, then resulted letter value is always 1 as carry.

Step-2:
Next we have T+G=U & O+0O=T

LETTER

We will go for O+O=T first.
We have O=1, so O+O=1+1=2(T)

Step-3:
Next we have T+G=U
We T=2, so 2+G=U

Now here we know U must generate carry so 2+G must be 10 or greater that 10 means we must add such
number in 2 so, that we can geticarry generated(or we can add 10 or more than 10).

We have first option (if we'consider G=9, i.e 2+G as 2+9(G)=11, here we get U=1)
But we can’t chose@lU=1"as 1 is already assigned to O.
We have second eption'(if we consider G=8, i.e 2+Gas 2+8(G)=10, here we get U=0)

Whichieantbe chosen & then we can tally the answer as follows:

21 LETTER
+8 1
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Learning Objective:
11. Means-End-Analysis

11. Means-End-Analysis:

» A collection of search strategies that can reason either forward or backward but for a problem onedirection
or the other must be chosen, but a mixture of the two directions is appropriate for solving a eemplex,and
large problem.

Such a mixed strategy, make it possible that first to solve the major part of a problem and then/go back
and solve the small problems arise during combining the big parts of the problem:‘Such ajtéchnique is
called Means-Ends Analysis.

Means-Ends Analysis is problem-solving techniques used in Artificial intelligénce for limiting search in
Al programs.

It is a mixture of Backward and forward search technique.

The means end analysis process centers around the detection of dfifferences between the current state and
the goal state.

How means-ends analysis Works:

The means-ends analysis process can be applied recursively fora problem. It is a strategy to control search in
problem-solving.

Following are the main Steps which describe the working ef MEA techniques for solving a problem.
1. First, evaluate the difference between Initial State and\final State.
2. Select the various operators which can be applied for each difference.

3. Apply the operator at each differenceywhich reduces the difference between the current state and goal state.

Operator Subgoaling:

In the Mean end analysis progess,/we detect the differences between the current state and goal state. Once
these differences occur, thenwe can"apply an operator to reduce the differences. But sometimes it is possible
that an operator cannot beyapplied to the current state. So we create the sub problem of the current state, in
which operator can be applied,such type of backward chaining in which operators are selected, and then sub
goals are set up to eStablishithe preconditions of the operator is called Operator Subgoaling.

Algorithm ¢f"'Means-Ends Analysis

Stepal: Compares€URRENT to GOAL, if there are no differences between them then return.

Step-2: Otherwise, select the most important difference and reduce it by doing the following steps until
success or failure occurs:

a) Select a new operator O which is applicable for the current difference, and if there is no such operator,
then signal failure.

b) Attempt to apply operator O to CURRENT. Make a description of two states.
1) O-START, a state in which O’s preconditions are satisfied.
i1) O-RESULT, the state that would result if O were applied In O-START.
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c) If
(First-Part +== MEA (CURRENT, O-START))

(LAST-Part «== MEA (O-Result, GOAL)),

are successful, then signal Success and return the result of combining FIRST-PART, O, and LAST-
PART.

Example:

Let's take an example where we know the initial state and goal state as given below. In this problemywe need
to get the goal state by finding differences between the initial state and goal state and applying operators.

. <
(©) O
Initial State Goal State
Solution:

To solve the above problem, we will first find the differencessbetween initial states and goal states, and for
each difference, we will generate a new state and will apply thejoperators. The operators we have for this
problem are:

e Move
o elete
e Expand

1. Evaluating the initial state: In the ficst step, we will evaluate the initial state and will compare the initial
and Goal state to find the differences between both states.

: O
© O
Initial State Goal State
2. Applying Delete’operator: As we can check the first difference is that in goal state there is no dot symbol

which is present in the initial state, so, first we will apply the Delete operator to remove this dot.

&%
Delete
@ @
Initial state
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3. Applying Move Operator: After applying the Delete operator, the new state occurs which we will again
compare with goal state. After comparing these states, there is another difference that is the square is outside
the circle, so, we will apply the Move Operator.

Delete

Initial state
4. Applying Expand Operator: Now a new state is generated in the third step, and we will compare this state

with the goal state. After comparing the states there is still one difference which is the size of the square, so,
we will apply Expand operator, and finally, it will generate the goal state.

® ,
Delete Move O Expand

—— R ——

Initial state Goal state
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Module-2 Lecture-15

Learning Objective:

12 Adversarial Search
12.1 Game Playing
12.2 Game Tree

12 Adversarial Search:

» Adversarial search is a game-playing technique where the agents are surrounded| by a”cdompetitive
environment.

» A conflicting goal is given to the agents (multi agent). These agents compete with one another and try to
defeat one another in order to win the game.

» Such conflicting goals give rise to the adversarial search.

» Here, game-playing means discussing those games where human intelligenee and-logic factor is used,
excluding other factors such as luck factor. Tic-tac-toe, chess, checkers, gtcy, are such type of games where
no luck factor works, only mind works.

Mathematically, this search is based on the concept of ‘Game Theory.®Accetding to game theory, a game
is played between two players. To complete the game, one has to,win the game and the other looses
automatically.

12.1 Game Playing

» Game playing is an important domain of Al

» Games do not require much knowledge, the’only knowledge we need to provide is the rules, legal moves
and the conditions of winning ordosing the game.

» The most common search techniquesyin gamé playing are :
() Mini,Maxyalgorithm
(i1))Alpha Beta Pruning

12.2 Game Tree

A game tree is a tree whefe'nodesiof the tree are the game states and edges of the tree are the moves by players.
Game tree involves initial State] action function/successor function, and result Function/utility function.

Optimal Decisions in Games:

We will consider gamesywith two players, whom we will call MAX and MIN. MAX moves first, and then
theytaketurns moving until the game is over. At the end of the game, points are awarded to the winning player
and penaltiesyare given to the loser. A game can be formally defined as a kind of search problem with the
following components:

» The initial state, which includes the board position and identifies the player to move

» A successor function, which returns a list of (move, state) pairs, each indicating a legal move and the
resulting state.

» A terminal test, which determines when the game is over. States where the game has ended are called
terminal states.

» A utility function (also called an objective function or payoff function), which gives a numeric value for
the terminal states. In chess, the outcome is a win, loss, or draw, with values +1,-1, or 0.
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The initial state and the legal moves for each side define the game tree for the game. The below figure shows
part of the game tree for tic-tac-toe (noughts and crosses). From the initial state, MAX has nine possible
moves. Play alternates between MAX's placing an X and MIN'S placing an O until reach leaf nodes
corresponding to terminal states such that one player has three in a row or all the squares are filled. The
number on each leaf node indicates the utility value of the terminal state from the point of view of MAX:
high values are assumed to be good for MAX and bad for MIN (which is how the players get their names).
It is MAX's job to use the search tree (particularly the utility of terminal states) to determine the best move.

Example: Tic-Tac-Toe game tree: The following figure is showing part of the game-tree for tic-taestoe game.
Following are some key points of the game:

There are two players MAX and MIN.

Players have an alternate turn and start with MAX.
MAX maximizes the result of the game tree.

MIN minimizes the result.

MAX (x)

MIN (0)

MAX (X)

MIN (0)

TERMINAL

Utility

Fig:- Game Tree of Tic-Tac-Toe game

Explanation:

» From the initial state, MAX has 9 possible moves as he starts first. MAX place x and MIN place o, and
bothyplayers play alternatively until we reach a leaf node where one player has three in a row or all squares
are filled.

Both players will compute each node, minimax, the minimax value which is the best achievable utility
against an optimal adversary.

Suppose both the players are well aware of the tic-tac-toe and playing the best play. Each player is doing
his best to prevent another one from winning. MIN is acting against Max in the game.

So in the game tree, we have a layer of Max, a layer of MIN, and each layer is called as Ply. Max place x,
then MIN puts o to prevent Max from winning, and this game continues until the terminal node.
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» In this either MIN wins, MAX wins, or it's a draw. This game-tree is the whole search space of possibilities
that MIN and MAX are playing tic-tac-toe and taking turns alternately.

In a given game tree, the optimal strategy can be determined from the minimax value of each node, which can
be written as MINIMAX(n). MAX prefer to move to a state of maximum value and MIN prefer to move to a

state of minimum value then:

MINIMAX(s) =

UTILITY (s) if TERMINAL-TEST(s)

MaXge Actions(s) MINIMAX(RESULT(s,a)) if PLAYER(s) = MAX
MiNge Actions(s) MINIMAX(RESULT (s,a)) if PLAYER(s) = MIN
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Learning Objective:
13. Mini-Max Algorithm

13. Mini-Max Algorithm

>

Mini-max algorithm is a recursive or backtracking algorithm which is used in decision-making and'game
theory. It provides an optimal move for the player assuming that opponent is also playing optimally.<This
algorithm uses recursion to search through the game-tree.

This Algorithm computes the minimax decision for the current state.

In this algorithm two players play the game, one is called MAX and other is,called MIN.

Both the players fight it as the opponent player gets the minimum benefit while they get the maximum
benefit.

Here both the Players of the game are opponent of each other, where MAX will'select the maximized value
and MIN will select the minimized value.

The minimax algorithm proceeds all the way down to the terminal nede ofithe tree, then backtrack the tree
as the recursion.

Working of Mini-Max Algorithm:

Step-1: In the first step, the algorithm generates the entire game-tree and apply the utility function to get the
utility values for the terminal states.

In the below tree diagram, let's take A is thejnitialsstate of the tree. Suppose maximizer takes first turn which
has worst case initial value = -co, and minimizex will takénext turn which has worst-case initial value = +oo.

3 -1l 3 4 -3

Step 2: Now, first we find the utilities value for the Maximizer, its initial value is -co0, so we will compare each
value in terminal state with initial value of Maximizer and determines the higher nodes values. It will find the
maximum among the all.

For node D max(-1,-00) => max(-1,8)= 8
For Node E max(-3, -o0) => max(-3, -1)=-1
For Node F max(2, -00) => max(2,1) =2
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For node G max(-3, -00) = max(-3, 4) =4

Step 3: In the next step, it's a turn for minimizer, so it will compare all nodes value with +oo, and will find the
3rd layer node values.

For node B min(8,-1) =-1 or fornode B min(8,+0)=>min(8,-1)=:1

For node C min (2,4)=2 or fornode C  min(2,+e0)=>min(2,4)=-2

=1

Step 4: Now it's a turn fer/Maximizer, and it will again choose the maximum of all nodes value and find the
maximum value forthe,rootnode.

In this game treey there-are only 4 layers, hence we reach immediately to the root node, but in real games,
there will be more than 4layers.

Eor node A max(-1,2)=2 ornode A max(-1,-00)=>max(-1,2)=2




That was the complete workflow of the minimax two player game

Time complexity- As it performs DFS for the game-tree, so the time complexity of‘Mini-Max algorithm is
O(bm), where b is branching factor of the game-tree, and m is the maximum depthvof the tree.

Space Complexity- Space complexity of Mini-max algorithm is alse*similar.to DFS which is O(bm).
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Learning Objective:
14. Optimal decisions in multiplayer games

14. Optimal decisions in multiplayer games

>

Many popular games allow more than two players. Let us examine how to extend the minimax idea to
multiplayer games. This is straightforward from the technical viewpoint, but raises,some interesting new
conceptual issues.

First, we need to replace the single value for each node with a vector of values. For example, in a three-
player game with players A, B, and C, a vector (VA, vB, vC ) is associated with each node.

For terminal states, this vector gives the utility of the state from each player’s viewpoint. (In two-player,
zero-sum games, the two-element vector can be reduced to a singlesvalu¢ bécause the values are always
opposite.) The simplest way to implement this is to have the UTILITY fumiction return a vector of utilities.
Now we have to consider non terminal states. Consideér the node marked X in the game tree shown in the
figure below.

In that state, player C chooses what to do. The two choi€€s lead to terminal states with utility vectors
vA =1, vB =2, vC =6 and vA =4, vB =2,4C=3""Since 6 1s bigger than 3, C should choose the first move.
This means that if state X is reached, subseéquent play will lead to a terminal state with utilities vA =1,
vB =2, vC =6 . Hence, the backed=up value of X is this vector.

The backed-up value of a node n is always the utility vector of the successor state with the highest value
for the player choosing at n.

Anyone who plays multiplayersgames, such as Diplomacy, quickly becomes aware that much more is
going on than in two-player’games. Multiplayer games usually involve alliances, whether formal or
informal, among'the players. Alliances are made and broken as the game proceeds.

For Example.suppose A and B are in weak positions and C is in a stronger position. Then it is often optimal
for bothwA'and B to attack C rather than each other, lest C destroy each of them individually. In this way,
collaboration emerges from purely selfish behavior. As soon as C weakens under the joint onslaught, the
alliance loses its value, and either A or B could violate the agreement. In some cases, explicit alliances
merely make concrete what would have happened anyway. In other cases, a social stigma attaches to
breaking an alliance, so players must balance the immediate advantage of breaking an alliance against the
long-term disadvantage of being perceived as untrustworthy:.

If the game is not zero-sum, then collaboration can also occur with just two players. Suppose, for example,

that there is a terminal state with utilities vA =1000, vB =1000 and that 1000 is the highest possible utility
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for each player. Then the optimal strategy is for both players to do everything possible to reach this state—

that is, the players will automatically cooperate to achieve a mutually desirable goal.

to move
A

(4, 1,2}

2.3y (6,1,2) (7,4.1) (5,1.1) (1.,5.2) (7.7, 545

Fig:- The first three plies of a game tree with three players (A, B, C). Bach node is labelled with values from
the viewpoint of each player. The best move is marked at the root.
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Module-2 Lecture-18

Learning Objective:

15.

15.

>

Alpha-Beta Pruning

Alpha-Beta Pruning
Alpha-beta pruning is a modified version of the minimax algorithm. It is an optimization technique for the
minimax algorithm.
It reduces the computation time by a huge factor. This allows us to search much faster*and.even go into
deeper levels in the game tree. It cuts off branches (reducing the size of the%earch tree)in the game tree
which need not be searched because there already exists a better move available.
Hence there is a technique by which without checking each node of thesgameitree we can compute the
correct minimax decision, and this technique is called pruning. This involves two threshold parameter
Alpha and beta for future expansion, so it is called alpha-beta pruning»It is also called as Alpha-Beta
Algorithm.
Alpha-beta pruning can be applied at any depth of a tree; and'sometimes it not only prune the tree leaves
but also entire sub-tree.
The two-parameter can be defined as:
Alpha: The best (highest-value) choice we haye found so far at any point along the path of Maximizer.
The initial value of alpha is =%,
Beta: The best (lowest-value)(choice we have found so far at any point along the path of Minimizer.
The initial value of beta ig™+5.
The Alpha-beta pruning to a'standard minimax algorithm returns the same move as the standard algorithm
does, but it removessall the nedes which are not really affecting the final decision but making algorithm

slow. Hence by pruning these nodes, it makes the algorithm fast.

Condition for)Alpha-beta pruning:

Thie main condition which required for alpha-beta pruning is a>=

Key points about alpha-beta pruning:

>
>
>

The Max player will only update the value of alpha.
The Min player will only update the value of beta.
While back tracking the tree, the node values will be passed to upper nodes instead of values of alpha

and beta.
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» We will only pass the alpha, beta values to the child nodes.

Working of Alpha-Beta Pruning:

Let's take an example of two-player search tree to understand the working of Alpha-beta pruning.

Step 1: At the first step the, Max player will start first move from node A where o= -co and = +oo, these value
of alpha and beta passed down to node B where again a= -o0 and = +oo, and Node B passes the same value
to its child D.

Terminal

Step 2: At Node D, the value of a wilhbe calculated as its turn for Max. The value of a is compared with
firstly 2 and then 3, and the max (2, 3) = 3%will be the value of a at node D and node value will also 3.

Step 3: Now algorithm backtrack to hode B, where the value of B will change as this is a turn of Min, Now
B= +oo, will compare with the(available subsequent nodes value, i.e. min (o0, 3) = 3, hence at node B now o=
-0, and = 3.

In the next step, algorithm graverse the next successor of Node B which is node E, and the values of o= oo, and
B= 3 will also be passed:
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Min

Terminal

node

Step 4: At node E, Max will take its turn, and the value of alpha will change./The“current value of alpha will
be compared with 5, so max (-o0, 5) = 5, hence at node E o= 5 and = 3, where a>=f, so the right successor
of E will be pruned, and algorithm will not traverse it, and the valuewat noede E will be 5.

Terminal
node

Step 5: At fiext'step, algorithm again backtrack the tree, from node B to node A. At node A, the value of alpha
will be changed the maximum available value is 3 as max (-o0, 3)= 3, and = +oo, these two values now passes
to right successor of A which is Node C.

At node C, 0=3 and = +oo, and the same values will be passed on to node F.

Step 6: At node F, again the value of a will be compared with left child which is 0, and max(3,0)= 3, and then
compared with right child which is 1, and max(3,1)= 3 still o remains 3, but the node value of F will become
1.




Min

Terminal
node

Step 7: Node F returns the node value 1 to node C, at C o+ 3 and =stoo, here the value of beta will be changed,
it will compare with 1 so min (o0, 1) = 1. Now at C, a=3 and p= 1, and again it satisfies the condition a>=,

so the next child of C which is G will be pruned, and the algotithin will not compute the entire sub-tree G.

Min
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Step 8: C now returns the value of 1 to A here the best value for A is max (3, 1) = 3. Following is the final

game tree which is the showing the nodes which are computed and nodes which has never computed. Hence
the optimal value for the maximizer is 3 for this example.

Min

Terminal
node

48 | Page




Module-2 Lecture-19

Learning Objective:
16. Logical Agent

17. Knowledge based Agent

16. Logical Agent:

Alogical agent in Artificial Intelligence is an intelligent agent that makes decisions based on logical reasoning.
It uses knowledge representation and inference mechanisms to derive conclusions from available information.
Logical agents operate using propositional logic or first-order logic (FOL) to make deductions and solve
problems systematically.

17. Knowledge based Agent

>

The central component of a knowledge-based agent is its knowledge base,or KB. A knowledge base is a
set of sentences. Each sentence is expressed in a language called a knowledge representation language and
represents some assertion about the world. Sometimes we dignify asenterice with the name axiom, when
the sentence is taken as given without being derived from other sentences.

There must be a way to add new sentences to the knowledge,base and a way to query what is known. The
standard names for these operations are TELL and ASK, respectively. Both operations may involve
inference that is, deriving new sentences from old.,

Inference must obey the requirement thatswhenfone\ASKs a question of the knowledge base, the answer
should follow from what has been toldte the knowledge base previously.

The agent maintains a knowledge base, KB; which miay initially contain some background knowledge.
Each time the agent program is ¢alled, it does three things.

e First, it TELLs the knowledge base what it perceives.

e Second, it ASKs the-kmowledge base what action it should perform. In the process of answering
this query, extensive’reasoning may be done about the current state of the world, about the
outcomes of possible action sequences, and so on.

Third, the’agent program TELLs the knowledge base which action was chosen, and the agent
executes,the action.
The details of the representation language are hidden inside three functions that implement the interface
between the seénsots and actuators on one side and the core representation and reasoning system on the
other.
The funetions are discussed below:
MAKE-PERCEPT-SENTENCE(): This function returns a sentence which tells the perceived
information by the agent at a given time.
MAKE-ACTION-QUERY(): This function returns a sentence which tells what action the agent must
take at the current time.
MAKE-ACTION-SENTENCE(): This function returns a sentence which tells an action is selected
as well as executed.
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Various levels of knowledge-based agent:

1. Knowledge level:

Knowledge level is the first level of knowledge-based agent, and in this level, we need to specify what the
agent knows, and what the agent goals are. With these specifications, we can fix its behavior. For example,
suppose an automated taxi agent needs to go from a station A to station B, and he knows the way from A to
B, so this comes at the knowledge level.

2. Implementation level:

This is the physical representation of logic and knowledge. At the implementation leyél agent perform
actions as per logical and knowledge level. At this level, an automated taxi agent actuallysimplemeént his
knowledge and logic so that he can reach to the destination.




Module-2 Lecture-20
Learning Objective:
18. Logic
18.1 Propositional Logic
18.1.1 Syntax of propositional logic
18.1.2 Logical Connectives
18.1.3 Truth Table

18. Logic:

In AIML logic is the formal and structured approach to reasoning that allows machines (Computers, robots, or
systems) to make decisions, solve problems, or draw conclusions based on & setof rules, facts, or knowledge.

Logic helps machines perform reasoning tasks like humans do by following cestain principles of logic (such
as true/false, and/or/not, etc.).

Types of Logic in AIML:
There are two main types of logic used in AIML, these,are

1. Propositional Logic (PL)
2. First-Order Logic (FOL) or Predicate Jsogic

18.1 Propositional Logic (PL)"%

» Propositional Logic is also known-as Bool¢an Logic, is the simplest form of logic used in Artificial
Intelligence (Al) to express facts, statements, and conditions.

» It uses propositions (statements) that'ean be either True (T) or False (F).

Example of Propositional Juogic:

a) It is Saturday.

b) The Sun rises from West(False proposition)
c) 13+2= 67(Halse propesition)

d)/5 is'a prime number.

Rules‘for Writing Propositional Logic:

A proposition is a declarative statement that can either be True (T) or False (F) but not both.
Propositional Logic uses five main logical connectives to connect statements.The connectives are:
NOT(Negation), AND(Conjuction),OR(Disjunction),IMPLIES and BICONDITIONAL.

Every propositional logic statement must be clear and unambiguous.
When combining two or more propositions, always use parentheses to avoid confusion.
When combining propositions, you must always follow the truth table to evaluate the logic.
Avoid writing statements that contradict each other.
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» The implication represents a cause-effect relationship. Always ensure the cause happens before the effect.
Example (P — Q)
» Always write complex propositional logic in standard form:

18.1.1 Syntax of Propositional Logic:

The syntax of propositional logic defines the allowable sentences for the knowledge representation.

There are two types of Propositions:
a) Atomic Propositions /Atomic Sentence
b) Complex propositions/Complex Sentence

a) Atomic Proposition/Atomic Sentence:
Atomic propositions are simple propositions. It consists of a single proposition symbol. These are the
sentences which must be either true or false.

Example:

5+21s 7, it is an atomic proposition as it is a true fact.
"The Sun is cold" is also a proposition as it is a false fact.

b) Complex propositions/Complex Sentence:

Complex propositions are constructed by combining\simpler or atomic propositions, using
parentheses and logical connectives.

Example:

"It is raining today, and street is wet."

"Ankit is a doctor, and his clifiic is in Mumbai."

18.1.2 Logical Connectives:

Logical connectives are usedt0 connect two simpler propositions or represent a sentence logically.
We can create complex propositiofis with the help of logical connectives.

There are mainly five.connectives, which are given as follows:

1. NOT(Negation): A sentence such as - P is called negation of P. A literal can be either Positive literal or
negative fiteral.
Examplealt is raining.

P=It 1Ssaining.

=P
. AND(Conjunction): A sentence which has A connective such as, P A Q is called a conjunction.

Example: Rohan is intelligent and hardworking. It can be written as,
P=Rohan is intelligent,
Q= Rohan is hardworking. — PA Q.
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OR(Disjunction): A sentence which has V connective, such as P v Q is called disjunction, where P and
Q are the propositions.

Example: "Ritika is a doctor or Engineer",
Here P= Ritika is Doctor.
Q= Ritika is Engineer, so we can write it as P V Q.

IMPLIES(Implication): A sentence such as P — Q, is called an implication. Implicationseare also
known as if-then rules. It can be represented as

If it is raining, then the street is wet.
Let P= It is raining,
Q= Street is wet, so it is represented as P — Q

IF AND ONLY IF(Biconditional): A sentence such as P«»> Q is a Biconditional'sentence, example: An
angle is right if and only if it measures 90 degree.

Example:
Let P=An angle is right
Q= An angle is measures 90 degree
It can be represented as P <> Q.

Following is the summarized table for Logical Conne€tives:

Word Technical Term | /Symbol Meaning Example

NOT NEGATION = Reverses the truth value —A — True if A is False

AND CONJUNCTION A True if both operands are | (A A B) — True only if A
true and B are both True

OR DISJUNCTION True if at least one operand is | (AV B) — True if A or B
true (or both) are True
IMPLIES IMPEICATION True unless the first operand | (A — B) — False only if
is true and the second is false | A is True and B is False
IF AND ONLY IF | BIGONDITIONAL True if both operands have | (A <> B) — True if A and
the same truth value B are both True or both
False

18.1:3 Truth Table:

A'truth table is a table used in logic and Boolean algebra to show all possible truth values of logical
expressions based on their inputs. It lists all possible combinations of truth values for variables and shows the
result of applying logical operators.

For Negation:
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For Conjunction:

For Disjunction:

For Implication:

For Biconditional:
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Truth table with three propositions:

We can build a proposition composing three propositions P, Q, and R. This truth table is made-up of 8n
Tuples as we have taken three proposition symbols.

P Q (PVQ)AR

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

FALSE

FALSE
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Module-2 Lecture-21

Learning Objective:
18. Logic

18.1 Propositional Logic
18.1.4 Precedence of Logical Connectives
18.1.5 Evaluation Rules
18.1.6 Logical Equivalence
18.1.7 Equivalence Laws
18.1.8 Limitations of Propositional logic

18.1.9 Translate English sentences into Propositional Logi¢

18.1.4 Precedence of Logical Connectives:

The precedence of logical connectives determines thé"order in which operations are evaluated in a logical
expression, similar to operator precedence in arithmetic.

18.1.5 Evaluation Rules:

» Operators with higher precedence are evaluated first unless parentheses dictate otherwise.
» Parentheses override precedence, ensuring that the enclosed operations are computed first.

Precedence Order (Highestto,Lowest)

Precedence Operator Name

1 (Highest) = NOT (Negation)

2 A AND (Conjunction)

3 \Y% OR (Disjunction)

4 — IMPLICATION (If-Then)
5(Lowest) N BICONDITIONAL (If and Only If)

18.1.6 Logical Equivalence:

Logical equivalence means that two logical expressions always produce the same truth values for all
possible inputs. If two statements A and B are logically equivalent, we write:

A=B




This means that A and B have the same truth table.
Example:
1. Prove =(AVB) = (=AA-=B)
Ans:- —=(AVB) = (=AA-B)
This states that NOT (A OR B) is logically equivalent to (NOT A AND NOT B).

A B AVB —~(AVB) -A -B

F

F
F
T

Since the columns for ~(AVB)—(AVB) and ~AA—~B—AA—B are identical, the'tivo expressions are logically
equivalent.

Tautologies:

A proposition P is a tautology if it is true under all cit€umstances. It means it contains the only T in the final
column of its truth table.

Example: Prove that the statement (P—Q) <3(~Q-—=~P)lis a tautology.

P Q P—Q ~Q ~P ~Q—~P (P—Q)—=(~Q—~P)
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Contradiction:
A statement that is always false is known as a contradiction.

Example: Show that the statement P A~P is a contradiction.

~P

18.1.7 Equivalence Laws:

Equivalence Laws or Relations are used to reduce or simplify a given.welliformed formula or to derive a new
formula from the existing formula. These laws can be verified using theitruth table approach.

Some of the important equivalence laws are given below.

SI1. No Name of Relation Equivalence Relations

Commutative Law AVB=BVA
AANB=BAA

Associative Law Av(BvVvC)=(AvB)vC
AN (BAC)= (AAB)AC

Double Negation Law “(TA)=A

Distributive Laws AV(BAC)=(AVB)A(AVC)
)= (

AABVC)=(AAB)V(AACQ)

De Morgan’s Laws —“(AVB)=—~AA—B
~(AAB)=—AvV—B

Absorption Laws AV(AAB)=A
AANAVB)=A
AV(-AAB)=AVB
AAN(CAVB)=AAB
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Idempotence Law AVA=A
ANA= A

Excluded Middle Law AV —A= T(True)

Contradiction Law A N —A = F(False)

Commonly Used Equivalence AVF=A

Relations AvT=T

ANT=A

ANE=TF

A—B=—-AVB
A~ B = (A=B) M B—A)
= (AANBYV-AAN—B

18.1.8 Limitations of Propositional logic:
I.  We cannot represent relations like ALL, some, or none with propositional logic.
Example:
a. All the girls are intelligent.
b. Some appléesare sweet.

II.  Propositional logic has limited,expressive power.
III.  In propositional logic, welcannot'déscribe statements in terms of their properties or logical
relationships.

18.1.9 Translate English sentences into Propositional Logic

Example:

a. Let p = It is'raining

b. Let'q = Mary is sick

c. Lett = Bob stayed up late last night
d. Let r~= Paris is the capital of France

e. Let s = John is a loud-mouth
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Translating Negation

a. It isn’t raining

P

b. It is not the case that Mary isn’t sick
-q

c. Paris is not the capital of France
-r

d. John is in no way a loud-mouth
-s

e. Bob did not stay up late last night
-t

Translating Conjunction

a. It is raining and Mary is sick

(PAQ)

b. Bob stayed up late last night and John is a loud-mouth
(tAs)

c. Paris isn’t the capital of France and It isn’t raining

(°r A—p)

d. John is a loud-mouth but Mary isn’t sick

(sA—q)

e. It is not the case that it is raining and Mary isisick

translation 1: It is not the case that both it'israinifigiand Mary is sick
~(pAQq)

translation 2: Mary is sick and it is notithe case that it is raining
pAQ

Translating Disjunction

a. It is raining or Mary is sick

(PVa)

b. Paris is the capital of France’and it is raining or John is a loud-mouth
(rAp)Vs)

or (rA(pVs))

c. Mary is siek'or Mary isn’t sick

Cm")

d. John is a loud-mouth or Mary is sick or it is raining
((s\ag) v p)

or (sV(qVp))

e. It is not the case that Mary is sick or Bob stayed up late last night

~(qV?Y

Translating Implication

a. If it is raining, then Mary is sick

(P—q
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b. It is raining, when John is a loud-mouth

(s —p)

c. Mary is sick and it is raining implies that Bob stayed up late last night
((@Ap)—1)

d. It is not the case that if it is raining then John isn’t a loud-mouth
~(p — 79)

Translating Equivalence or Biconditional Statement

a. It is raining if and only if Mary is sick

(Rl
b. If Mary is sick then it is raining, and vice versa
(P~ AQ—Dp)

or (p < q)

c. It is raining is equivalent to John is a loud-mouth

(p < s)

d. It is raining is not equivalent to John is a loud-mouth

~(p < s)




Module-2 Lecture-22

Learning Objective:
19. Resolution in Propositional Logic

19. Resolution in Propositional Logic

In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-
complete theorem-proving technique for sentences in propositional logic and first-order logic.

The resolution rule in propositional logic is a single valid inference rule that produces’a new clause implied
by two clauses containing complementary literals. A literal is a propositional variable or|thémegation of a
propositional variable. Two literals are said to be complements if one is the negation of the other.

In propositional logic, the procedure for producing a proof by resolution of propesition P with respect to a set
of axioms F is in the following.

Algorithm:

1. Convert all the propositions of F to a clause form.
2. Negate P and convert the result to clause form. Additito the set,of clauses obtained in step 1.
3. Repeat until either a contradiction is found or no progress,can-be made.
a) Select two clauses. Call these the parent clause.
b) Resolve them together. The resulting claus€, called'resolvent, will be the disjunction of all of the
literals of both of the parent clauseSiwith'the following exception:
If there are any pairs of literal§ 'k and*sk. such that one of the parent clauses contains L and the
other contains —L , then select one suchipair and eliminate both L and —L from the resolvent.
c) Ifthe resolvent is the emptyyclause, then a contradiction has been found. If it is not then add it to
the set of clauses availablé to the procedure.

Example:
Suppose we are given thie axioms’below and want to prove R.
Given AXxioms Converted to Clause Form Proposition
P P
(PAQ) —»R “PV—-QVR
SvT)—Q -SvQ
-TvQ
T T

» First we negate R, Producing —R, Which is already in clause form. Then we begin selecting pair of
clauses to resolve together. Although any pair of clauses can be resolved, only those pairs that contain
complementary literals will produce a resolvent that is likely to lead to the goal of producing the empty
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clause. Here we begin by resolving with the clause —R Since that is one of the clauses that must be
involved in the contradiction we are trying to find.

One way of viewing the resolution process is that it takes a set of clauses that are all assumed to be
true and based on information provided by the others, it generates new clauses that represent
restrictions on the way each of those original clauses can be made true.

A contradiction occurs when a clause becomes so restricted that there is no way it can be true. This is
indicated by the generation of the empty clause.

Here in order for proposition 2 to be true. One of three things must be true: =P, ~Q or R. But we,are
assuming that —R is true. Given that the only way for proposition 2 to be true is fot one of twe things
to be true : P or —Q. That is what the first resolvent clause says.

But proposition 1 says that P is true , which means that —P can’t be true, which leaves only one way
for proposition 2 to be true, namely for —Q to be true. Proposition 4 can be true if eithet —T or Q is
true. But since we now know that ~Q must be true, the Only Way for Propo6sition 4 to be true is for
—T to be true.

But proposition 5 says that T is true . Thus there is no way for all of'these clauses to be tryue in a
single interpretation. This is indicated by the empty clause.

~PV-QVR “R

=

Fig:- Resolution in Propositional Logic
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Learning Objective:
20. Forward Chaining & Backward Chaining

Forward Chaining

Backward Chaining

Forward chaining starts from known facts and
applies inference rule to extract more data unit it
reaches to the goal.

Backward chaining starts from the goal and
works backward through inference rules to
find the required facts that support the goal.

It is a bottom-up approach.

It is a top-down approach.

Forward chaining is known as data-driven
inference technique as we reach to the goal using
the available data.

Backward chaining is known as goal-driven
technique as we start from the goal and
divide into sub-goal to extract the facts.

Forward chaining reasoning applies a breadth-
first search strategy.

Backward chaining reasoning applies a
depth-first search strategy.

Forward chaining tests for all the available rules

Backward chaining only tests for few
required rules.

Forward chaining is suitable for the planning,
monitoring, control, and interpretation
application.

Backward chaining is suitable for
diagnostic, prescription, and debugging
application.

Forward chaining can generate an infinite
number of possible conclusions.

Backward chaining generates a finite
number of possible conclusions.

It operates in the forward direction.

It operates in the backward direction.

Forward chaining is aimed for any conclusion.

Backward chaining is only aimed for the
required data.
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Module-2 Lecture-24

Learning Objective:
21. First-Order Logic

21.1 Syntax of First-Order logic:

21. First-Order Logic:

» First-order logic is another way of knowledge representation in artificial intelligence. It is‘an exténsion
to propositional logic. FOL is sufficiently expressive to represent the natural language,statements in a
concise way.

First-order logic is also known as Predicate logic or First-order predigate logic. First-order logic is a
powerful language that develops information about the objects in a more easy way and can also express
the relationship between those objects.
First-order logic does not only assume that the world contains factsulike propositional logic but also
assumes the following things in the world:

Objects: A, B, people, numbers, colors, wars, theories, squares etc.

Relations: It can be unary relation such as: red, round, is'adjacent, or n-any relation such as: the

sister of, brother of, has color, comes between

Function: Father of, best friend, third inning of, end of etc.

» As a natural language, first-order logic also has two main parts:
a) Syntax

b) Semantics

21.1 Syntax of First-Order Logic:

The syntax of FOL determines which'eolleetion of symbols is a logical expression in first-order logic. The
basic syntactic elements of first-order logic are symbols. We write statements in short-hand notation in FOL.
Basic Elements of First-order logic:

Following are the basiclelements of FOL syntax:

Constant |1, 2, A, John, Mumbali, cat,....

Variables |x,y,z a,b,....

Predicates |Brother, Father, >,....

Function |sqrt, LeftLegOf, ....

Connectives |A,V, ", =, &

Equality |=—

Quantifier
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Atomic sentences:

» Atomic sentences are the most basic sentences of first-order logic. These sentences are formed from
a predicate symbol followed by a parenthesis with a sequence of terms.
» We can represent atomic sentences as Predicate (term1, term2,
» Example:
o Ravi and Ajay are brothers: => Brothers(Ravi, Ajay).
Chinky is a cat: => cat (Chinky).
Complex Sentences:
» Complex sentences are made by combining atomic sentences using connectives.
» First-order logic statements can be divided into two parts:
Subject: Subject is the main part of the statement.
Predicate: A predicate can be defined as a relation, which bindsstwo atoms together in a statement.
Consider the statement: "X is an integer.", it consists of two parts, the figst part x is the subject of the

statement and second part "is an integer," is known as a prédieate,

X is an integer.

LYJ \ Y J

Subject Predicate

Quantifiers in First-order logiec:
» A quantifier is aflanguage element which generates quantification, and quantification specifies the
quantity of spe€imen-in the universe of discourse.
These aresthe symbols that permit to determine or identify the range and scope of the variable in the
logical ‘expression. There are two types of quantifier:
(1) Universal Quantifier, (for all, everyone, everything)

(i1))  Existential quantifier, (for some, at least one).

(i) Universal Quantifier:
» Universal quantifier is a symbol of logical representation, which specifies that the statement within
its range is true for everything or every instance of a particular thing.
» The Universal quantifier is represented by a symbol V, which resembles an inverted A.
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» In universal quantifier we use implication "—".
If x is a variable, then Vx is read as:

For all x

For each x

For every x.

(ii) Existential Quantifier:

Existential quantifiers are the type of quantifiers, which express that the statement within its"scope is
true for at least one instance of something.

It is denoted by the logical operator 3, which resembles as inverted EqWhen it is used with a
predicate variable then it is called as an existential quantifier.

In Existential quantifier we always use AND or Conjunction symbol«A).

If x is a variable, then existential quantifier will be 3x or 3(x). And it will,be tead as:
There exists a 'x.'
For some 'x.'
For at least one 'x.'

Note:

» The main connective for universal quantifierV is implication —.
» The main connective for existential quantifier 3 is and A.

Properties of Quantifiers:
e In universal quantifier, VXVyis similar to VyVvx.
o In Existential quantifier, 3x3¥y’1s similar to Jy3x.

e 3xVy is not similar/te, Vy3x.

Example:

Some Examples/0f FOLwsing quantifier:

1Al birds fly.

In this’question the predicate is "fly(bird)."

And singerthere are all birds who fly so it will be represented as follows.
Vx bird(x) —fly(x).

2. Every man respects his parent.

In this question, the predicate is "respect(x, y)," where x=man, and y= parent.

Since there is every man so will use V, and it will be represented as follows:
Vx man(x) — respects (X, parent).
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3. Some boys play cricket.
In this question, the predicate is "play(x, y)," where x= boys, and y= game. Since there are some boys so we
will use 3, and it will be represented as:

3Ix boys(x) — play(x, cricket).

4. Not all students like both Mathematics and Science.

In this question, the predicate is "like(x, y)," where x= student, and y= subject.

Since there are not all students, so we will use V with negation, so following representation for this:
-V (x) [ student(x) — like(x, Mathematics) A like(x, Science)].

5. Only one student failed in Mathematics.

In this question, the predicate is "failed(x, y)," where x= student, and y= subject.

Since there is only one student who failed in Mathematics, so we will use following representation for this:
3(x) [ student(x) — failed (x, Mathematics) AV (y) [~(x==y) A student(y) —,—failed (x, Mathematics)].

Free and Bound Variables:

The quantifiers interact with variables which appear in a suitable way. Fhere are/two types of variables in

First-order logic which are given below:

Free Variable: A variable is said to be a free variable in @ formula, if it occurs outside the scope of the
quantifier.

Example: Vx 3(y)[P (x, y, z)], where z is a freevariable:

Bound Variable: A variable is said to be a bound variable in a formula if it occurs within the scope of the
quantifier.

Example: Vx [A (x) B(y)], here x and y are the bound variables.
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Learning Objective:
22. Knowledge Engineering in First Order Logic

22. Knowledge Engineering in First Order Logic:

Knowledge Engineering:

The process of constructing a knowledge-base in first-order logic is called as knowledge- engineering. In
knowledge- engineering, someone who investigates a particular domain, learns important concept of that
domain, and generates a formal representation of the objects, is known as knowledge engincer:

The knowledge-engineering process:

An engineering term is used when we are talking about any project. Therefore, knewledge engineering over a
project involves the below described steps:

identify the task

Assemble the refevant
knowiedge

Decide vocabulary

Encode generaf knowliedge
of domain

Encode description of
probiem instance

Pose queries & get
answers

Debug knowliedge base

Fig: Knowledge Engineering Process

Identify the task: The knowledge engineer must delineate the range of questions that the knowledge base
will support and the kinds of facts that will be available for each specific problem instance. For example,
does the knowledge base need to be able to choose actions or is it required to answer questions only about
the contents of the environment? Will the sensor facts include the current location? The task will identify
the knowledge requirement needed to connect the problem instance with the answers.
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Assemble the relevant knowledge: A knowledge engineer should be an expert in the domain. If not, he
should  work with the real experts to extract their knowledge. This concept is known as Knowledge
Acquisition.

Here, we do not represent the knowledge formally. But to understand the scope of the knowledge base and

also to understand the working of the domain.
Decide on_a vocabulary of constants, predicates, and functions: Translating important domain-level

concepts into logical level names. This involves many questions of knowledge engineering styles Like

programming style ,this can have a significant impact on the eventual success of the project.
Here, the knowledge engineer asks questions like:

¢ What are the elements which should be represented as objects?

¢ What functions should be chosen?
After satisfying all the choices, the vocabulary is decided. It is known as the Ontology of the domain.
Ontology determines the type of things that exists but does not determine their specificyproperties and
interrelationships.

Encode general knowledge about the domain: In this step, the knowledge gngineerwrites down the axioms
for all the chosen vocabulary terms. This pins down(to the extent possible) the meaning of the terms, enabling
the expert to check the content. Often, this step reveals misconceptions or gaps occur between the vocabulary
terms that must be fixed by returning to step3 and iterating through«the process.

Encode description of the specific problem instance: We write'the'simple atomic sentences for the selected
vocabulary terms. We encode the chosen problem instances.

Pose queries to the inference procedure andiget answers: It is the testing step. We apply the inference
procedure on those axioms and problem-specificfaets which we want to know.

Debug the knowledge base: It is thedast step of the knowledge engineering process where the knowledge
engineer debugs all the errors.




Module-2 Lecture-26

Learning Objective:

23. Inference in First Order Logic

23. Inference in First Order Logic
Inference in FOL can be achieved using:

Inference rules

Forward chaining and Backward chaining
Resolution

Unification

Inference in First-Order Logic (FOL) is the process of deducing new facts or conclusions from given facts or
premises. To understand FOL inference, let's first clarify some key tetminologies:

1. Substitution in FOL:

Substitution is a core operation in inference, allowing us‘tefreplage variables with constants, terms, or other
variables. It is essential for applying inference rules like unifigation and resolution.

Notation: If we write F[a/x], it means we substituté the variable x with the constant a in the formula F.

Example: If we have the formula Loves(x, Mary) andapply the substitution {John/x}, it results in Loves(John,
Mary).

Substitution is particularly complex whenidealing with quantifiers (V and 3). We must be careful not to
change the meaning of a formula byssubstituting variables bound by quantifiers.

2. Equality in FOL:

In addition to predicates’and terms, FOL also includes equality (=) to specify that two terms refer to the
same object.

Example:

» Brothér(John)~ Smith

— Thisymeans that John's brother is the same person as Smith.
> Father(Peter) # Robert

—This means that Peter’s father is not Robert.

We can also use negation to express inequality:
—(x =Yy) is equivalent to x # y, meaning that x and y are different objects.

Equality allows us to form stronger logical statements, ensuring that different representations of the same
entity are treated as identical when reasoning in FOL.
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Inference Rules for Quantifiers in First-Order Logic (FOL):

Inference rules in FOL help us derive new logical conclusions from given statements. The key inference
rules involving quantifiers are:

1. Universal Instantiation (UI)

2. Existential Instantiation(EI)

1. Universal Instantiation (UI)

Universal instantiation is also called as universal elimination. It is a valid inference'rule. It can be
applied multiple times to add new sentences.

The new KB is logically equivalent to the previous KB. As per Ul, we ¢an infer any sentence
obtained by substituting a ground term for the variable.

The Ul rule state that we can infer any sentence P(c) by substituting.a gfeund term c (a constant
within domain x) from V x P(x) for any object in the universe of'discourse.

It can be represented as

Vx P(x)
P(c) .

Example:1
IF "Every person like ice-cream"=> Vx P(x) so we canunfer that
"John likes ice-cream" => P(c)
Example:2
Let's take a famous example,
"All kings who are greedy ateEvili®, So let our knowledge base contains this detail as in the form of FOL:
Vx king(x) A greedy (x)/—Evil (X),
So from this information, we’'can infer any of the following statements using Universal Instantiation:
King(Johin) A Greedy (John) — Evil (John),
King(Richard) A Greedy (Richard) — Evil (Richard),
King(Father(John)) A Greedy (Father(John)) — Evil (Father(John)),

2. Existential Instantiation (EI):

» Existential instantiation is also called as Existential Elimination, which is a valid inference rule in
first-order logic.

» It can be applied only once to replace the existential sentence.

» The new KB is not logically equivalent to old KB, but it will be satisfiable if old KB was satisfiable.
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This rule states that one can infer P(c) from the formula given in the form of 3x P(x) for a new
constant symbol c.

The restriction with this rule is that c used in the rule must be a new term for which P(c ) is true.
It can be represented as

Ix P(x)
P(c)

Example:

From the given sentence: 3x Crown(x) A OnHead(x, John),

So we can infer: Crown(K) A OnHead( K, John), as long as K does not appear in'the knowledge
base.

The above used K is a constant symbol, which is called Skolem constant.

The Existential instantiation is a special case of Skolemization process.

Generalized Modus Ponens Rule:

» For the inference process in FOL, we have a single inference rule which is called Generalized Modus
Ponens. It is lifted version of Modus ponens.

» Generalized Modus Ponens can be summarized as, " Pamplies-Q and P is asserted to be true,
therefore Q must be True."

» According to Modus Ponens, for atomic sentences pi, pt', q. Where there is a substitution 0 such that
SUBST

(0, pi',) = SUBST (0, pi), it can be represented as:

pl' . p2 ,..pn'(p1lAP2ZA.ApPn=q)
SUBST( #.q)

Example:

We will use this rule"for, Kings are evil, so we will find some x such that x is king, and x is greedy so we can
infer that x is evil.

Here let saypp1'is king(John) pl is king(x)
p2.is Greedy(y) p2 is Greedy(x)
0 is {xMohn, y/John} q is evil(x)
SUBST(0,q) is evil(John)
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Module-2

Learning Objective:
24. Propositional vs. Predicate Logic

24. Propositional vs. Predicate Logic

Lecture-27

Feature

Propositional Logic

Predicate Logic

Definition

Deals with declarative statements
(propositions) that have a definite truth
value (true/false).

Uses variables, objects, andwelations to
express logical statements with a
specifiedddomain.

Complexity

Simple, uses Boolean logic.

More expressive, extends propositional
logic with predicates and quantification.

Truth Value

Each proposition has a fixed truth value
(true or false).

The truthyvalue of a predicate depends on
the values of variables.

Scope Analysis

Not performed.

Uses quantifiers to analyze scope (V for
all, 3 for existence, 3! for exactly one).

Logical Operators

Uses standard Jogical comnectives:
Negation  (—), “WCotjuniction| (A),
Disjunction, (V), Exclusive OR (@),
Implication (=), Bi-Conditional (&).

Extends propositional logic by adding
quantifiers.

Representation

Generalized (representation of logical
statements.

More specialized and expressive.

Handling of Entities

Cannot handle sets of entities.

Deals with of entities

quantifiers.

sets using
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Learning Objective:
25. Unification and Lifting

25. Unification and Lifting:

> Lifted inference rules require finding substitutions that make different logical expressions look identical.
This process is called unification.

» Unification is a process of making two different logical atomic expressions identical by finding a
substitution. Unification depends on the substitution process.

> 1t takes two literals as input and makes them identical using substitution.

» Let ¥1 and W2 be two atomic sentences and ¢ be a unifier such that, ¥1e= W26y then it can be expressed
as UNIFY (V1, ¥2).

Example: Find the MGU for Unify {King(x), King (John)}
Let Y1 = King(x), ¥2 = King (John)

Substitution 8 = {John/x} is a unifier for these atoms jand applying this substitution, and both
expressions will be identical.

» The UNIFY algorithm is used for unification, whichitakes two atomic sentences and returns a unifier for
those sentences (If any exist).

» Unification is a key component 6fiall first-ordef inference algorithms.

> 1t returns fail if the expressions do notunatch with each other.

> The substitution variables arecalleddMost General Unifier or MGU.
E.g. Let's say there are\two different expressions, P(x, y), and P(a, f(z)).

In this example,(we need'to make both above statements identical to each other. For this, we will
perform the substitution.

P(a, f(z)) (11)

Substitute x with a, and y with f(z) in the first expression, and it will be represented as a/x and f(z)/y.
With both the substitutions, the first expression will be identical to the second expression and the
substitution set will be: [a/x, f(z)/y].

Conditions for Unification:

Following are some basic conditions for unification:

» Predicate symbol must be same, atoms or expression with different predicate symbol can never be
unified.

75| Page




» Number of Arguments in both expressions must be identical.

» Unification will fail if there are two similar variables present in the same expression.

» For each pair of the following atomic sentences find the most general unifier (If exist).
Examples:
1.UNIFY (knows(Richard, x), knows(Richard, John))
Here, W1 = knows(Richard, x), and W2 = knows(Richard, John)
S0 => { knows(Richard, x); knows(Richard, John)}
SUBST 6= {John/x}
S1=> { knows(Richard, John); knows(Richard, John)}, Successfully Unified:
Unifier: {John/x}.
2. Find the MGU of {p(f(a), g(Y)) and p(X, X)}
Sol: SO => Here, WY1 = p(f(a), g(Y)), and ¥2 = p(X, X)
SUBST 6= {f(a) / X}
S1=>Y1=p(f(a), g(Y)), and Y2 = p(f(a), f(a))
SUBST 0= {f(a) / g(y)}, Unification failed.
Unification is not possible for these expressions.
3. Find the MGU of UNIFY (prime (4l), prime(y))
Here, Y1 = {prime(11) , and Y2 = priine(y)}
SO => {prime(11) , prime(y)}
SUBST 6= {11/y}
S1 => {prime(11) , prime(d 1)}, Successfully unified.
Unifier: {11/y}.
4. Find the MGU of} {p (X, X), and p (Z, f(Z2))}
Heére, Y1 =%p (X, X), and Y2 =p (Z, {(2))
S0 =%{p (X, X), p (Z, f2))}
SUBST 6= {X/Z}
S1=>{p(Z,2),p (Z,f(Z))}
SUBST 0= {f(Z) / Z}, Unification Failed.

Hence, unification is not possible for these expressions.

76 | Page




Module-2 Lecture-29

Learning Objective:
26. Forward Chaining

26. Forward Chaining
Horn Clause and Definite clause:

Horn clause and definite clause are the forms of sentences, which enables knowledge base to use a more
restricted and efficient inference algorithm. Logical inference algorithms use forward and backwatd chaining
approaches, which require KB in the form of the first-order definite clause.

Definite clause: A clause which is a disjunction of literals with exactly one positive literalis known as a
definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most one positive literal is known as horn
clause. Hence all the definite clauses are horn clauses.

Example: (—p V — q V k). It has only one positive literal k.
It is equivalent top A q — k.

Consider the following example which we will solvefin both approaches:

Forward Chaining:

Example:

"As per the law, it is a crime for an American to sell' weapons to hostile nations. Country A, an enemy of
America, has some missiles, and all the-missiles were sold to it by Robert, who is an American citizen."

Prove that "Robert is criminals"

To solve the above problemfirst, we-will convert all the above facts into first-order definite clauses, and
then we will use a forward-chathing algorithm to reach the goal.

Facts Conversion intesFOL:
» Itis a crime-for an,American to sell weapons to hostile nations. (Let's say p, q, and r are variables)
American(p) A weapon(q) A sells (p, g, 1) A hostile(r) — Criminal(p)

> Country Avhas some missiles. ?p Owns(A, p) A Missile(p). It can be written in two definite clauses by
using Existential Instantiation, introducing new Constant T1.

Owns(A, T1) )

Missile(T1) 3)
» All of the missiles were sold to country A by Robert.
Vp Missiles(p) A Owns (A, p) — Sells (Robert, p, A)
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» Missiles are weapons.

Missile(p) — Weapons (p)
» Enemy of America is known as hostile.
Enemy(p, America) —Hostile(p)
» Country A is an enemy of America.

Enemy (A, America)

> Robert is American

American(Robert). ()

Forward chaining proof:

Step-1: In the first step we will start with the known facts and will choose th€ésentenees which do not have
implications, such as: American(Robert), Enemy(A, America), Owns(A, T1), and*Missile(T1). All these
facts will be represented as below.

American (Robert) Missile (T1) Owns (A, T1) Enemy (A, America)

Step-2:

At the second step, we will see those facts which inferdrom, available facts and with satisfied premises.
Rule-(1) does not satisfy premises, so it will'not be added in the first iteration.

Rule-(2) and (3) are already added.

Rule-(4) satisfy with the substitution {p/I'1}, so Sells (Robert, T1, A) is added, which infers from the
conjunction of Rule (2) and (3).

Rule-(6) is satisfied with the substitGtidn(p/A), so Hostile(A) is added and which infers from Rule-(7).

Weapons(T1) Sells (Robert, T1, A) Hostile(A)

NN

American (Robert) || Missile (T1) Owns (AT1) Enemy (A, America)

Step-3: At step+#3, as we can check Rule-(1) is satisfied with the substitution {p/Robert, q/T1, r/A}, so we
can add Criminal(Robert) which infers all the available facts. And hence we reached our goal statement.

Criminal (Robert)

| weaponsttn) | |sEusmohen,r1,m| [ Hostile(A) |

IAmpnmn(Rnhwu || Missile (T1) | | Owns (A, T1) | [ Enemy (A, America) I

Hence it is proved that Robert is Criminal using forward chaining approach.
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Module-2 Lecture-30

Learning Objective:
27. Backward Chaining

27. Backward Chaining:

In backward-chaining, we will use the same above example, and will rewrite all the rules.

Vp Missiles(p) A Owns (A, p) — Sells (Robert, p, A)
Missile(p) — Weapons (p)

Enemy(p, America) —Hostile(p)

Enemy (A, America)
American(Robert).

Backward-Chaining Proof:

In Backward chaining, we will start with our goal predicate, which is Criminal(Robert), and then infer
further rules.

Step-1: At the first step, we will take the goal fact. And from the goal fact, we will infer other facts, and at
last, we will prove those facts true. So our goalfactfs, "Robert is Criminal," so following is the predicate of
it.

Criminal (Robert)

Step-2: At the second step, we will infer other facts form goal fact which satisfies the rules. So as we can
see in Rule-1, the goal predicate Criminal (Robert) is present with substitution {Robert/P}. So we will add
all the conjunctive facts below the first level and will replace p with Robert. Here we can see American
(Robert) is a fact, so it isyproved here.

Criminal (Robert)

{ Robert/p}

American {Robert) Weapon (q) Sells (Robert,q,r) Hostile(r)

3

Step-3: At step-3, we will extract further fact Missile(q) which infer from Weapon(q), as it satisfies Rule-
(5). Weapon (q) is also true with the substitution of a constant T1 at q.
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{ Robert/p }

American (Raobert) Weapon (g) | Ss\ls(Robsﬂ,ﬁ,r}ll Hostile(r)

| Missile (q) |

{aT}

i7F

Step-4: At step-4, we can infer facts Missile(T1) and Owns(A, T1) form Sells(Robert, T1,t) which satisfies
the Rule- 4, with the substitution of A in place of r. So these two statements azre proved here.

{ Robert/p }

American (Robert) Weapon (q) Sells (Robert, T1,r)

IR AN

Missile (q) Missile (T1) Owns(A,T1)

(g} €3 €3 '
Step-5: At step-5, we can infer the

fact Enemy(A, America) from Hostile(A) which satisfies Rule- 6. And hence all the statements are proved

true using backward chaining.

Criminal (Robert)

If.m(.‘nc.'irl [Ron-c:rl)l Weapon (q) |5e||s. {Robert,T1.r) | | Hostile{A) |

”/%\

I Missile (q) || Missile (T1) | I Oremis(A,T1) | |En9my (A_Amenoa;l

{ami} i 7 € > £ 3
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Learning Objective:
28. Resolution in FOL

28. Resolution in FOL

Resolution method in FOPL is an uplifted version of the propositional resolution method.

In FOPL., the process to apply the resolution method is as follows:

Conversion of facts into first order logic.

Convert the given axiom into CNF, i.e., a conjunction of clauses. Each clause sheuld be dis-junction of
literals.

Apply negation on the goal given.

Use literals which are required and prove it.

Draw resolution graph/tree. Unlike propositional logic, FOPL litetals are. complementary if one unifies
with the negation of another literal.

For Example:
{Bird(F(x)) V Loves(G(x), x)} and {—Loves(anb)V —Kills(a, b)}

Eliminate the complementary literals Loves(G(x),x),and Loves(a,b)) with 6 ={a/G(x), b/x} to give the
following output clause:

{Bird(E(x)) V —Kills(G(x),x)}

The rule applied on the following example. is called Binary Resolution because it only resolves exactly two
literals.

Conjunctive Normal Form

There are following steps used to’convert into CNF:
e Eliminate.all implication (—) and biconditional.
(PLQ)==>(P>Q)AQ>P)
P>Q=>49PVQ

Move negation (—)inwards

De-Morgan’s Law.
7(PVQ) =P ATQ
APAQ=TPVIQ

Double negation elimination

T (P)=P
—Vx: A becomes 3x: —A and,

—3x: A becomes Vx: ~A
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It means that the universal quantifier becomes existential quantifier and vice-versa.

e Rename variables or standardize variables.
¢ FEliminate existential instantiation quantifier by elimination.

In this step, we will eliminate existential quantifier 3, and this process is known as Skolemization.

Drop Universal quantifiers.

Use distributive laws(V over ")

Eliminate AND (*)/conjunction symbols separating the expression in clauses.

A " B splits the entire clause in to two separate clauses i.e. A and B .

(AV B) A c splits the entire clause into two separate clauses AV B and C.

(AAB) Vv C splits the clause into two clauses i.e. AVC and BVC. [ (AAB)V C =(AVC)(AVB)]

Example:

a) John likes all kind of food.

b) Apple and vegetable are food.

c) Anything anyone eats and not killed is food.
d) Anil eats peanuts and still alive.

e) Harry eats everything that Anil eats.

Prove by resolution that:
f) John likes peanuts.
Step-1: Conversion of Facts into FOL

In the first step we will convert all the given statements into its first order logic.

wx: food(x) = likes(lohn, x)

. food{Apple) A food(vegetables)
Wx Vy: eats(x, y) A = killed(x) = foodl(y)
eats (Anil, Peanuts) A alive{Anil).

. Wi eats{Anil, x) = eats{Harry, x)

Wx: — killed(x) = alive(x) }added predicates.
Wx: alive(x) - killed(x)

likes(lohn, Peanuts)

Step-2: Conversion of FOL into CNF

In First order logic resolution, it is required to convert the FOL into CNF as CNF form makes easier for
resolution proofs.

e Eliminate all implication (—) and rewrite.
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a. V x — food(x) V likes(John, x)
b. food(Apple) A food(vegetables)
c. VxVy—[eats(x,y) A ~killed(x)] V food(y)
d. eats (Anil, Peanuts) A alive(Anil)
e. V x —eats(Anil, x) V eats(Harry, Xx)
f. Vv x— [~ killed(x) ] V alive(x)
g. V x —alive(x) V — killed(x)
h. likes(John, Peanuts).

e Move negation (—) inwards and rewrite
a. V x — food(x) V likes(John, x)
b. food(Apple) A food(vegetables)
c. VxVy—eats(x, y) Vkilled(x) V food(y)
d. eats (Anil, Peanuts) A alive(Anil)
e. V x —eats(Anil, x) V eats(Harry, x)
f. vV x —killed(x) ] V alive(x)
g. V x —alive(x) V — killéd(x)
h. likes(John, Peanuts).

e Rename variables or standardize variables
a. Vx —deod(x) V likes(John, x)
b. feod(Apple) A food(vegetables)
c. iy Yz —eats(y, z) V killed(y) V food(z)
d./eats (Anil, Peanuts) A alive(Anil)
e/Vw— eats(Anil, w) V eats(Harry, w)
f. Vg —killed(g) ] V alive(g)
g. Yk —alive(k) V — killed(k)
h. likes(John, Peanuts).

e Eliminate existential instantiation quantifier by elimination

In this step, we will eliminate existential quantifier and this process is known as Skolemization. But in this
example problem since there is no existential quantifier so all the statements will remain same in this step.
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e Drop Universal quantifiers.

In this step we will drop all universal quantifier since all the statements are not implicitly quantified so we
don't need it.

a. ~ food(x) V likes(John, x)

b. food(Apple)

c. food(vegetables)

d. —eats(y, z) V killed(y) V food(z)
e. eats (Anil, Peanuts)

f. alive(Anil)

g. — eats(Anil, w) V eats(Harry, w)
h. killed(g) V alive(g)

i. ~alive(k) V — killed(k)

j- likes(John, Peanuts).

Note: Statements "food(Apple) A food(vegetables)" and "eats (Anil, Peanuts) A alive(Anil)" can be written
in two separate statements.

e Distribute conjunction A over disjunction —
This step will not make any change in this problem.
Step-3: Negate the statement to be proved

In this statement, we will apply'negation to the conclusion statements, which will be written as —likes(John,
Peanuts)

Step-4: Draw Resolution/graph:

Now in this step, wewill solve the problem by resolution tree using substitution. For the above problem, it

will be given as follows;




—likes{John, Peanuts) — food(x} V likes(lohn, %)

\ / {Peanuts/x}

— food(Peanuts) — eats(y, z) VW killed{y) V food|(z)

\ / {Peanuts/z}

— eats|y, Peanuts) V killed(y) eats (Anil, Peanuts)

{anilfy}

Killed( Anil) — alive(k) W — killed{k)

\ / {Anil/k}

— alive(anil) alive(Anil)

{ } Hence proved.

Hence the negation of the conclusion has been proved as a complete contradiction with the given set of
statements.

Explanation of Resolution graph:

In the first step of resolution graph, —likes(John, Peanuts) , and likes(John, x) get resolved(canceled)
by substitution of {Peanuts/x}, and we aré¢ left with — food(Peanuts)

In the second step of the resolution graph, — food(Peanuts) , and food(z) get resolved (canceled) by
substitution of { Peanuts/z}, and we are left with — eats(y, Peanuts) V killed(y) .

In the third step of the résolution graph, — eats(y, Peanuts) and eats (Anil, Peanuts) get resolved by
substitution {Anil/y}, and we are left with Killed(Anil) .

In the fourth step,of the resolution graph, Killed(Anil) and — killed(k) get resolve by substitution
{Anil/k}, and we atedeft with — alive(Anil).

In the last step of'the resolution graph — alive(Anil) and alive(Anil) get resolved.
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Module-3 Lecture-32

Learning Objective:
29. Uncertainty

29.1Causes of Uncertainty
29.2 Acting under Uncertainty
29.3 Handling Uncertainty

29. Uncertainty

> Uncertainty in Artificial Intelligence (Al) refers to the inability of models to make, fully confident
predictions due to incomplete, ambiguous, or noisy data. Al systems must‘agcount for uncertainty to
make accurate and reliable decisions, especially in dynamic environments Where information is
inconsistent or evolving.

Suppose A and B are two statements, If we implement if-then ruleyto these statements, we might write
A—B, which means if A is true then B is true, or if A is false then B isfalse, if A is true then B is false,
if A is false then B is true. But consider a situationwher¢ wetare/not sure about whether A is true or
not then we cannot express this statement, this situationsis ¢alled uncertainty.

> So to represent uncertain knowledge, where we are not sure about the predicates, we need uncertain
reasoning or probabilistic reasoning.

29.1 Causes of Uncertainty/Reasons for uncertainty

Following are some leading causes of uncertainty t0 océur in the real world.
* Missing data, unavailable or noisy data.

= Incomplete environment details.

= Data might be present but unreliable or ambiguous.

= The representation of dataumay be imprecise or inconsistent.

= Data may be based oh defaults, and defaults may exceptions.

= Information occurred frem unreliable sources.

= ExperimentalErrors.

= Equipment fault.

®* Temperature variation.

= Climate change etc.

29.2 Acting under Uncertainty

» The presence of uncertainty changes radically the way in which an agent makes decisions.

> Agents must still act even if world not certain. If can only act with certainty, most of the time the agent
will not act.

» To make such choices, an agent must first have preferences between the different possible outcomes
of the various plans, utility theory can be used to represent and reason with preferences.
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> Major problem with logical-agent approaches: Agents almost never have access to the whole
truth about their environments.

» In that case, an agent must reason under uncertainty

> Uncertainty also arises because of an agent’s incomplete or incorrect understanding of its environment.
29.3 Handling Uncertainty

In Artificial Intelligence and Machine Learning, systems often operate in environments that are unpredi€table,
incomplete, or noisy. To perform effectively, they must be capable of handling uncertainty.

This involves reasoning, making decisions, and taking actions even when some information s missing or
ambiguous.

Several methods have been developed to address different types of uncertainty:
Fuzzy logic

Probabilistic reasoning (Probability theory)
Markov models

Dempster-shafer theory etc.




Module-3 Lecture-33

Learning Objective:
30. Probability

30.1 Basic Probability Notations

30. Probability

Probability can be defined as a chance that an uncertain event will occur. It is the numerical measure ofithe
likelihood that an event will occur. The value of probability always remains between 0, and 1 that/represent
ideal uncertainties.

0 <P(A) <1, where P(A) is the probability of an event A

P(A) = 0, indicates total uncertainty in an event A.

P(A) =1, indicates total certainty in an event A.

We can find the probability of an uncertain event by using the below formula.

Number of desired outcomes

Probability of occurrence =

Total number of autcomes

Example: Think about a dice. When a dice is rolled there are siX possible outcomes: 1, 2, 3, 4, 5 and 6. To
find the probability of the event of rolling a 4, find the number of possible ways of rolling a 4 and divide it by
the total number of possible outcomes.
There is one way of rolling a 4 and there are'$ix’possible outcomes, so the probability of rolling a 4 on a dice
is 1/6.

P(—A) = probability of a not happening event.

P(—A) + P(A) =1 Or P(—A) =1-P(A)
Probability of events not happéning
Events that cannot happen at the same'time are called Mutually Exclusive Events. For example, a football
team can win, lose or draw butythese things cannot happen at the same time - they are mutually exclusive.
Since it is certain that one ofitheSe outcomes will happen, their probabilities must add up to 1.
Example
A bag contains 12 counters of different colours: 5 red, 4 white and 3 black. Find the probability of not selecting
a red counter.
Theprobability of'selecting a red counter is 5/12, so the probability of not selecting a red counter is 1-5/12
which is 12/12+5/12=7/12=0.58

Event: Each possible outcome of a variable is called an event.

Sample space: The collection of all possible events is called sample space.

Random variables: Random variables are used to represent the events and objects in the real world.

Prior probability: The prior probability of an event is probability computed before observing new
information.

Posterior Probability: The probability that is calculated after all evidence or information has taken into
account. It is a combination of prior probability and new information.
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30.1 Basic Probability Notations

The version of probability theory we present uses an extension of propositional logic for its sentences.

The dependence on experience is reflected in the syntactic distinction between prior probability statements,
which apply before any evidence is obtained, and conditional probability statements, which include the
evidence explicitly.

Propositions: Degrees of belief are always applied to propositions--assertions that such-and-such is the case.
Random Variable: The basic element of the language is the random1 variable, which can be thought'of as
referring to a "part" of the world whose "status" is initially unknown.

Domain: Each random variable has a domain of values that it can take on.

Atomic Events: The notion of an atomic event is useful in understanding the foundatiofis ofiprobability theory.
An atomic event is a complete specification of the state of the world about which the agentyis uncertain. It can
be thought of as an assignment of particular values to all the variables of which the world is'éemposed.

P(A) - probability that event A occurs
P(A”) - probability that event A will not occur (A’ is the complement of A)
P(AU B) - probability that A will occur or B will occur or both (Union of A and B)

P(A NB) - probability that A and B will occur simultaneously (Joint probability of A and B)
P(A | B) - probability of A, given that B is known to have o¢ccurred. (€onditional probability)

Conditional Probability/Posterior Probability:

Conditional probability is a probability of occurring an event Wheén another event has already happened.
Let's suppose, we want to calculate the event Aawhen'event B has already occurred, "the probability of A under
the conditions of B", it can be written as:

P(AAB)
P(B)

P(A|B) =

Where P(AAB)= Joint probability.of Ayand B
P(B)= Marginal probability of B/Probability of event B.
If the probability of A is given\and we'need to find the probability of B, then it will be given as:

P(AAB)
P(B‘ﬂ}_ {-"(;"I_:I
It can be explained by using the below Venn diagram, where B is occurred event, so sample space will be
reduced towset B, and now we can only calculate event A when event B is already occurred by dividing the
probability offP(AAB) by P(B).




Example:
In a class, there are 70% of the students who like English and 40% of the students who likes English and
mathematics, and then what is the percent of students those who like mathematics?
Solution:
Let, A is an event that a student likes Mathematics
B is an event that a student likes English.

P(AAB) 04
P[A|E]=ﬁ=u_—?=5?%

Hence, 57% are the students who like Mathematics.

Joint Probability

Joint probability is the probability of two events happening together. The two events are usually designated
event A and event B. In probability terminology, it can be written as:

P(A and B) or P(A N B) or P(A"B)
Joint probability can also be described as the probability of the interse¢tion of'two (or more) events. The
intersection can be represented by a Venn diagram:

Black and/or White Things

Black White

(A Venn diagram intersection shows the intersection of events A and B happening together.)

Example: The probability that a card is [a five and black] = p(five and black) = 2/52 = 1/26. (There are two
black fives in a"deck of52 cards, the five of spades and the five of clubs).
Example:

Classification of Bank Employees
Rank
R
Male | L 80
Female ' . 40

Total | 10

=

Gender

Find out the probability of male person which have the rank R2.
P(M AND R2)=80/300=0.26
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Module-3 Lecture-34

Learning Objective:
31. Axioms of probability

31. Axioms of probability
There are three axioms of probability that make the foundation of probability theory-

Axiom 1: Probability of Event

The first one is t hat the probability of an event is always between 0 and 1. 1 indicates definite ‘action,of any
of the outcomes of an event and 0 indicates no outcome of the event is possible.

Axiom 2: Probability of Sample Space
For sample space, the probability of the entire sample space is 1.
Axiom 3: Mutually Exclusive Events

And the third one is- the probability of the event containing any possible outcome<of two mutually disjoint is
the summation of their individual probability.

1. Probability of Event:
The first axiom of probability is that the probability of.any eventis between 0 and 1.

Forany eventE, 0 < P(E) <1
As we know the formula of probability is thatywe divide the total number of outcomes in the event by the total
number of outcomes in sample space.

count of outcomes in Event

P (event) " Count of outcomes in Sample Space

And the event is a subsget gfysample space, so the event cannot have more outcome than the sample space.
Clearly, this value is'geing.to be between 0 and 1 since the denominator is always greater than the numerator.

2. Probability of Sample Space:
The second axiomiis that the probability for the entire sample space equals 1.

For Sample Space, P (S) = 1

Let’s take an example from the dataset. Suppose we need to find out the probability of churning for the
female customers by their occupation type.
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h. Churn=1
Salaried = 1 B ’ A

* Not Churn =0
D00 D
ki ’

Female = 4

ﬁ. Churn =2
fy .7 (o)
gg’iployed =3 'i Cf:\‘urtn =9
In our data-set, we have 4 female customers, one of them is Salaried and three of them are self-emplayed.
The salaried female is going to churn. Since we have only one salaried female who is going to churn, the

number of salaried female customers who are not going to churn is 0. Amongst 3 self-employed female
customers, two are going to churn and we can see that one self-employed female is’net,going,to churn.

This is the complete dataset:

gender occupation

Male salaried
Male self_employed
Male old self_employed

Male young self_employed

Female young salaried

Male old salaried

3l oM o N

Female young seif_employed

Male young self_employed
Male young salaried

Male young salaried

7
8
9
(o)

-

Male young self_employed

A
4

Female young self_employed

12 Male young retired

13 Female young self_employed

14 Male old seif_employed

So the probability of the'¢hurning status of female customer by profession, in the sample space of the problem
we actually have:

Salaried Churn, Salaried Not churn, Self-employed Churn, Self-employed Not churn And as we discussed
theirdistrbutioneeatlier, in this sample space of female customer:

Salaried Chumi = 1
Salaried'Not churn = 0
Self-employed Churn = 2
Self-employed Not churn = 1
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If you were to find out the probability that a person who is a female is salaried and is churning it will be equal
to:

P (Salaried Churn) = % = 0.25

Similarly, the probability of Salaried Not churn is:

P(Salaried Not Churn) =0 =+ 0
Then we have Self-employed Churn:

D/Qalf Emnlauad Phirn= 1. a4 N R
P(Self Employed Not Churn) = %

— 0.25
And finally Self-employed Not Churn:

And if we sum all of them up we get 1:

P(Sample Space)
=0.25+0+ 0.5+ .25=1

So essentially saying that this is our entire sample spdce and the total probability that we get here is equals to
1. This brings us to axiom 3 which is related to mutually.exclusive events.

3. Mutually Exclusive Event:

P (AU B) = P(A) + P(B) for mutuall exlusive events

If you remember the union formula you will recall that the intersection term is not here, which means there
is nothing common between*A and B. Let us understand these particular type of events which is called
Mutually Exclusive Events;

These Mutually exclusive events mean that such events cannot occur together or in other words, they don’t
have commonyalues or-we can say their intersection is zero/null. We can also represent such events as follows:

P(ANB) = 0

This means that the intersection is zero or they do not have any common value. For example, if the
Event A: is getting a number greater than 4 after rolling a die, the possible outcomes would be 5 and 6.

Event B: is getting a number less than 3 on rolling a die. Here the possible outcomes would be 1 and 2.

Clearly, both these events cannot have any common outcome. An interesting thing to note here is that events
A and B are not complemented of each other but yet they’re mutually exclusive.
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Module-3 Lecture-35

Learning Objective:
32. Joint Probability Distribution
32.1 Inference using Full Joint Distributions

32. Joint Probability Distribution
» A joint probability distribution simply describes the probability that a given individual takes“en two
specific values for the variables.

» The word “joint” comes from the fact that we’re interested in the probability of two things"happening at
once.

» For example,

| Baseball |Basketball| Football

13 15 | 20

23 16 1 13

36 31 | 33

» The above two-way table shows the results of a surveysthat/asked 100 people which sport they liked
best: baseball, basketball, or football. There are two variables: Sports and Gender.

» Out of the 100 total individuals there wer€ 13)whd"were male and chose baseball as their favourite sport.

» Thus, we would say the joint probabilityithat a‘given)individual is male and chooses baseball as their
favourite sport is 13/100 = 0.13 or 13%.

Calculate the entire joint probability distribution:

P(Gender = Male, Spoxt.=\Baseball) = 13/100 = 0.13

P(Gender = Male, Spott = Basketball) = 15/100 = 0.15

P(Gender = MalegSport=Football) = 20/100 = 0.20

P(Gender = Femalg, Sport = Baseball) = 23/100 = 0.23

P(Gender = Female,Sport = Basketball) = 16/100 = 0.16

P(Gender =Eemale, Sport = Football) = 13/100 = 0.13
NOTE: Notice that the,sum of the probabilities is equal to 1, or 100%

3271 Infexrence using Full Joint Distributions

Probability of all possible worlds can be described using a table called a full joint probability distribution —
the elements are indexed by values of random variables.
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toothache

—toothache

catch

—catch

catch

—catch

cavity

0.108

0.012

0.072

0.008

—cavity

0.016

0.064

0.144

0.576

Fig. : A Full joint distribution for the Toothache, Cavity, Catch world




Probabilistic inference: The computation of posterior probabilities for query propositions given observed
evidence.
The full joint probability distribution specifies the probability of each complete assignment of values to
random variables. It is usually too large to create or use in its explicit form, but when it is available it can
be used to answer queries simply by adding up entries for the possible worlds corresponding to the query
propositions.
Marginalization / summing out/Marginal Probability: The process of extract the distribution oversome
subset of variables or a single variable (to get the marginal probability), by summing up the probabilities
for each possible value of the other variables, thereby taking them out of the equations
Find the marginal probability of cavity is
P(Cavity)=0.108+0.012+0.072+0.00 8 = 0.2
Computing probability of a cavity, given evidence of a toothache is as follow
P(Cavity|Toothache) = P(Cavity”™ Toothache)/P (Toothache) =0.108+0.012/0:0.108+0.012+0.016+0.064=0.6
Just to check also compute the probability that there is no cavity given toothache is as follow:
P(~Cavity|Toothache)=P(-Cavity” Toothache)/p (toothache)=0.016+0.064/0.208+.,0.012+ 0.016 +0.064=0.4

» The two value sum is 1.0

» Notice that in these two calculations the term 1/p(toothache) remiains constant, no matter which value of
cavity we calculate. So it can be viewed as a normalization ‘¢onstant for the distribution P(Cavity|
Toothache),ensuring that it adds up to 1.

» Suppose X(cavity) is a single variable. Let E (Toothache) be the list of evidence variables, e be the list of
observed values for them, Y (Catch) be the remaining uniobserved variables. The query P(X|e) can be
evaluated as:

P(X |e) =aP(X,e)=a > P(X,e,y)
y

P(Cavity | toothache) = a P(Cavity, toothache)
= «a [P(Cavity, toothache, catch) + P(Cavity, toothache, ~catch)]
— «[(0.108,0.016) + (0.012,0.064)] = a (0.12,0.08) = (0.6,0.4) .

» In simply we can cal¢ulate P(Cavity| Toothache) even if we do not know the value of P(toothache).

» We temporarily forget about te factor 1/P(toothache) and add up the values for cavity and ~cavity
getting 0.12 and 0.08.But they do not sum to 1.

» So we normalize them by dividing each one by 0.12+0.08[0.12/0.12+0.08=0.6 and 0.08/0.12+0.08=0.4]
getting the trueprobabilities of 0.6 and 0.4.
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Module-3 Lecture-36

Learning Objective:
33. Independence

34. Probabilistic Reasoning
34.1 Bayes’ Rule and it’s Application

33. Independence
Independence between propositions a and b can be written as:
P(a|b)=P(a) or P(b|a) =P(b) or P(a A b) =P(a) P(b)
Independence assertions are usually based on knowledge of the domain.
As we have seen, they can dramatically reduce the amount of information négessary to specify the full
joint distribution.
If the complete set of variables can be divided into independent subsets, then the full joint can be
factored into separate joint distributions on those subsets.
For example, the joint distribution on the outcome of n independent coin flips, P(C1,...,Cn), can be
represented as the product of n single-variable distributionsR(Ci):

34. Probabilistic Reasoning

> Probabilistic reasoning is a way of knowledge representation/where we apply the concept of probability
to indicate the uncertainty in knowledge. In probdbilistic réasoning, we combine probability theory with
logic to handle the uncertainty.

» We use probability in probabilistic reasoning because)it provides a way to handle the uncertainty that is
the result of someone's laziness and ignorance.

> 1In the real world, there are lots of seeharios, where the certainty of something is not confirmed, such as "It
will rain today," "behaviour of someone for some situations," "A match between two teams or two players."
These are probable sentences for'which we can assume that it will happen but not sure about it, so here we
use probabilistic reasoning,

Need of probabilistic reasoning in Al:

i.  When thereare unpredictable outcomes.
ii.  When gpeeifications or possibilities of predicates becomes too large to handle.
ili. When an unknown error occurs during an experiment.

Inprobabilisticreasoning, there are two ways to solve problems with uncertain knowledge:
e Bayes'rule

e Bayesian Statistics

34.1Bayes' Theorem/Bayes' Rule and it’s application:

> Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian reasoning, which determines the
y y y y g
probability of an event with uncertain knowledge.
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> In probability theory, it relates the conditional probability and marginal probabilities of two random
events.

> Bayes' theorem was named after the British mathematician Thomas Bayes. The Bayesian inference is an

application of Bayes' theorem, which is fundamental to Bayesian statistics
> ltisa way to calculate the value of P(B|A) with the knowledge of P(A|B).
> Bayes' theorem allows updating the proba bility prediction of an event by observing new informatien of

the real world.

Example: If cancer corresponds to one's age then by using Bayes' theorem, we can determine the probability
of cancer more accurately with the help of age.

Bayes' theorem can be derived using product rule and conditional probability ofievent A with known event
B:

As from product rule we can write:

P(A A B)=P(A|B) P(B) or

Similarly, the probability of event B with known event A:
P(AAB)=P(B|A) P(A)

Equating right hand side of both the equations, we will'get:

P(B|A) P(4)

P(AIB) ===, )

..(a)

The above equation (a) is called a§ Bayes' rule or Bayes' theorem. This equation is basic of most
modern Al systems for probabjlisticiinference.

It shows the simple relationship’bétween joint and conditional probabilities. Here,

P(A|B) is known as postgrior, Which we need to calculate, and it will be read as Probability of hypothesis A
when we have occurredtan/evidence B.

P(BJA) is called the(likeliheed, in which we consider that hypothesis is true, then we calculate the probability
of evidence.

P(A).is called the prior probability, probability of hypothesis before considering the evidence
RP(B) is\calledymarginal probability, pure probability of an evidence.
In thefequation (a), in general, we can write P (B) = P(A)*P(BJAi), hence the Bayes' rule can be written as:

P(A;)*P(BJA;)
X P(A)P(BIA))

P(Ai|B) =
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Applying Bayes' rule:

Bayes' rule allows us to compute the single term P(B|A) in terms of P(A|B), P(B), and P(A). This is very
useful in cases where we have a good probability of these three terms and want to determine the fourth one.
Suppose we want to perceive the effect of some unknown cause, and want to compute that cause, then the
Bayes' rule becomes:

P(effect|cause) P(cause)
P(effect)

P(cause|effect) =

Example:

Question: what is the probability that a patient has diseases meningitis with a stiff neck?

Given Data:
A doctor is aware that disease meningitis causes a patient to have a stiff negkgandit,eccurs 80% of the time.
He is also aware of some more facts, which are given as follows:

e The Known probability that a patient has meningitis disease is,1/303000"

e The Known probability that a patient has a stiff neck is 2%

Let a be the proposition that patient has stiff neck and b be the pr@position that patient has meningitis.,
so we can calculate the following as:

P(alb) = 0.8
P(b) = 1/30000
P(a)=.02

1
P(b]a) = PADP®) _°Gag) _ 001333333
P(a) 0.02 : )

Hence, we can assume that 4 'patient out of 750 patients has meningitis disease with a stiff neck.
Application of Bayes' theorem‘in Artificial intelligence:
Following are somie applications of Bayes' theorem:

= [t is usedto calculate the next step of the robot when the already executed step is given.
=y, Bayes' theefem is helpful in weather forecasting.
= It can'selve the Monty Hall problem.
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Module-3 Lecture-37

Learning Objective:
34. Probabilistic Reasoning

34.2 Representing Knowledge in an Uncertain Domain: Bayesian Network

34.2 Representing Knowledge in an Uncertain Domain: Bayesian Network
» Bayesian belief network is key computer technology for dealing with probabilistic events and*te solve’a

problem which has uncertainty.

» We can define a Bayesian network as: "A Bayesian network is a probabilistic graphical model which
represents a set of variables and their conditional dependencies using a directed acyclic graph."

» lItis also called a Bayes’ network, belief network, decision network, or Bayesian model.

> Bayesian networks are probabilistic, because these networks are built frgm ayprobability distribution, and
also use probability theory for prediction and anomaly detection.

» Real world applications are probabilistic in nature, and to representythé relationship between multiple
events, we need a Bayesian network. It can also be dsed in vagious tasks including prediction, anomaly
detection, diagnostics, automated insight, reasoning, time serigs prediction, and decision making under
uncertainty.

» Bayesian Network can be used for buildihg models¥rem data and experts opinions, and it consists of two

parts:
e Directed Acyclic Graph
e Table oficonditional probabilities.

The generalized form of Bagesidn network that represents and solve decision problems under uncertain

knowledge is known asan Influence diagram.

A Bayesian netwogkegraph Is made up of nodes and Arcs (directed links), where:

VY
g

Fig.: Bayesian network graph
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» Each node corresponds to the random variables, and a variable can be continuous or discrete.

» Arc or directed arrows represent the causal relationship or conditional probabilities between random
variables. These directed links or arrows connect the pair of nodes in the graph.

» These links represent that one node directly influence the other node, and if there is no directed link that
means that nodes are independent with each other.

» In the above diagram, A, B, C, and D are random variables represented by the nodes of the netwofk\graph.

» If we are considering node B, which is connected with node A by a directed arrow, thén node Ayis called
the parent of Node B.

» Node C is independent of node A.

Note: The Bayesian network graph does not contain any cyclic graph. Henceé} it isKngwn as a directed acyclic

graph or DAG.

The Bayesian network has mainly two components:
e Causal Component
e Actual numbers

Each node in the Bayesian network has condition probability distribution P(Xi |Parent(Xi) ), which determines

the effect of the parent on that node.

The Bayesian network is based on Joint probabilitygdistribution and conditional probability.
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Module-3 Lecture-38

Learning Objective:
35. The Semantics of Bayesian Networks

35. The Semantics of Bayesian Networks:

There are two ways in which we can understand Semantics of Bayesian networks:

1. See the network as representation of the joint probability distribution. This is useful in understanding
how to construct networks.

2. See the networks as an encoding of a collection of conditional independence statements. This'1s
useful in designing inference procedures. However, the two ways are equivalent.

Example: Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably responds at
detecting a burglary but also responds for minor earthquakes. Harry has two neighbeurs David and Sophia,
who have taken a responsibility to inform Harry at work when they hear the alarmiaDavjd always calls Harry
when he hears the alarm, but sometimes he got confused with the phone ringiag and calls at that time too.
On the other hand, Sophia likes to listen to high music, so sometimes she misSes t0 hear the alarm. Here we
would like to compute the probability of Burglary Alarm.
Problem:

Calculate the probability that alarm has soundedg=but there 1§ neither a burglary, nor an

earthquake occurred, and David and Sophia both calledsthe, Hairy.

Solution:

The Bayesian network for the above problem is,given below. The network structure is showing
that burglary and earthquake is the pareat.nodé ofithe alarm and directly affecting the probability of
alarm's going off, but David and Sophia's ¢alls depend on alarm probability.

The network is representing that our asstimptions do not directly perceive the burglary and also
do not notice the minor earthqtiake, and they-also not confer before calling.

The conditional distributions foreaeh node are given as conditional probabilities table or CPT.

Each row in the CPT must bessumyto/1 because all the entries in the table represent an exhaustive set
of cases for the variable,

In CPT, a boolean vafiable with k boolean parents contains 2X probabilities. Hence, if there are
two parents, then,CPT will.Contain 4 probability values.

List of all events ageurring I this network:
Burglary (B)
Earthquake(E)
Alarm(A)
David-Calls(D)
Sophia calls(S)
We can write the events of problem statement in the form of probability: P[D, S, A, B, E], can

rewrite the above probability statement using joint probability distribution:
P[D, S, A, B,E|=P[D S, A, B, E|. P[S, A, B, E]
=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E]

=P [D|A].P[S|A, B,E]. P[ A, B, E]|
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=P[D | A]. P[ S | A]. P[A| B, E]. P[B, E|
=P[D |A]. P[S| A]. P[A| B, E]. P[B |E]. P[E]

T 0.002

Burglary B E Earthguake

o/

Alarm

./ \

Sophia
calls

F | 0998

David Calls

Let's take the observed probability for the Burglary and earthquake component:
P(B= True) = 0.002, which is the probability of burglary.

P(B= False)= 0.998, which is the probability of no burglary.

P(E= True)= 0.001, which is the probability of a minor, earthquake

P(E= False)= 0.999, Which is the probability.that an,earthquake not occurred. We can provide the

conditional probabilities as per the belowtables:

Conditional probability table for Alarm A:
The Conditional probability of Alarm Aidepends on Burglar and earthquake:

B E P(A= True) P(A= False)

True True 0.94 0.06
True False 0.95 0.04
False True 0.31 0.69

False False 0.001 0.999

Conditional probability table for David Calls:
The Conditional probability of David that he will call depends on the probability of Alarm.
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P(D= True) P(D= False)
0.91 0.09

0.05 0.95

Conditional probability table for Sophia Calls:

The Conditional probability of Sophia that she calls is depending on its Parent Node®Alarm.

P(S=True) P(S=False)

0.75 0.25

0.02 0.98

From the formula of joint distribution, we can write the preblem statement in the form of probability
distribution:

P(S, D, A, =B, -E) = P (S|A) *P (D|A)*P (A|-B * —E) *P(—~B)*P (-E).

=0.75* 0.91* 0.001* 0.998*0.999
=0.00068045.

Hence, a Bayesian network can answer anyjquery about the domain by using Joint distribution.
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Learning Objective:
36. Efficient Representation of Conditional Distribution

36. Efficient Representation of Conditional Distribution
Conditional Distribution

If X and Y are two jointly distributed random variables, then the conditional distribution‘of Y giveniX,is the
probability distribution of Y when X is known to be a certain value.

For example, the following two-way table shows the results of a survey that asked 100"people’which sport
they liked best: baseball, basketball, or football.

Baseball Basketballi Football

Male 13 | 15 | 20 48

Female 23 16 13 52

Total 3 | 31 | 33 100

If we want to know the probability that a person prefers aseértainysport given that they are male, then this is
an example of a conditional distribution.

The value of one random variable is known (the person\is male), but the value of the other random variable is
unknown (we don’t know their favourite sport).

To find the conditional distribution of sports‘preference among males, we would simply look at the values in
the row for

Male in the table:

Baseball |Basketball Football

<
‘Male ~.13 | 15 20
Female 23 16 13

Total 36 31 33

The conditienaldistribution would be calculated as:

e 'Males who prefer baseball: 13/48 = .2708
e Males who prefer basketball: 15/48 = .3125
e Males who prefer football: 20/48 = .4167

Notice that the sum of the probabilities adds up to 1: 13/48 + 15/48 + 20/48 = 48/48 = 1.

We can use this conditional distribution to answer questions like: Given that an individual is male, what is the
probability that baseball is their favourite sport?
From the conditional distribution we calculated earlier, we can see that the probability is .2708.
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In technical terms, when we calculate a conditional distribution we say that we’re interested in a particular
subpopulation of the overall population. The subpopulation in the previous example was males:

Baseball |Basketball Football | Total

e ———

Subpopulation

Male 13 15 20 48

Female 23 | 16 3 | R

Total 36 31 33

And when we want to calculate a probability related to this subpopulation, we,say that we’re interested in
a particular character of interest. The character of interest in the previous example,was baseball:

Character of Interest

'Baseball |Basketball| Football

Male 13 15 20

Subpopulation

Female 23 16 13

Total 36 31 33

To find the probability that the character of mterest occurs in the subpopulation, we simply divide the
value of the character of interest (e.g.-13) by the total values in the subpopulation (e.g. 48) to get 13/48 =
.2708.
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37.1 Exact Inference in Bayesian Networks

37. Inference in Bayesian Networks

> In practice, exact inference is not used widely, and most probabilistic inference algorithms are approximate.

» There are two types of inference techniques: exact inference and approximate inference.

» Exact inference algorithms calculate the exact value of probability P(X|Y) Algerithms, in, this class
include the elimination algorithm, the message-passing algorithm (sum-product, belief propagation), and
the junction tree algorithms.

Approaches to inference:

1. Exact methods
* Enumeration
» Variable elimination

= Belief propagation in poly trees etc.
2. Approximate methods

= Stochastic simulation / sampling methods
Markov chain Monte Carlo
Genetic algorithms
Neural networks
Simulated annealing etc.

37.1 Exact Inference in Bayesian Networks
Sum out variables from the joint withoutiactually constructing its explicit representation.

Simple query on the burglary network:

Pr(B | j, m) = Pr(B, j, m)|P(j, m) = o/Pr(B,j, m)=a Yed aPr(B,e, a, j, m)
Rewrite full joint entries using produet of CPT entries:

Pr(B|j, m)=a e aPuB)P(e)Pr(a|B, e)P(j | a)P(m | a)

=a Pr(B) >e P(e))_ a Pr(a/ Bne)P(j | a)P(m | a)

Je
@/@@

Recursive depth-first enumeration: O(n) space, O(d ") time.
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Enumeration Algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U Y

Q(X') « a distribution over X, initially empty
for each value ; of X do

extend e with value x; for X

Q(z;) +— ENUMERATE-ALL(VARS|[bn], e)
return NORMALIZE(Q( X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
Y« FIRST(vars)
if Y has value yine
then return P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e)
else return ©, P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e,)
where e, is e extended with Y = y
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37. Inference in Bayesian Networks
37.2 Approximate Inference in Bayesian Networks

37.2 Approximate Inference in Bayesian Networks

Instead of creating a sample and then rejecting it, it is possible to mix sampling with inference to reason
about the probability that a sample would be rejected. In importance sampling methods,£ach sample has a
weight, and the sample average is computed using the weighted average of samples. Likelihood weighting
is a form of importance sampling where the variables are sampled in the order defined by abelief. network,
and evidence is used to update the weights. The weights reflect the probability that a sample would not be
rejected.

~ : -

function Likelihood-Weighting(X, e, bn, N) returns an estimate of P(X|e)
local variables: W, a vector of weighted counts over X, initially zero

for j=1 to Ndo

x, w < Weighted-Sample( bn)

W/|x| «+— W|x]| + w where x is the value of X in x
return Normalize(W/|X])

function Weighted-Sample(bn, e) returns an event and a weight

x < an event with n elements; w+-1
for i=1to ndo
if X; has a value x; in e
then w«w x P(X;= x; | parents(X;))
else x; +— a random sample from Pr(X; | parents(X;))
return x, w

Example

Suppose we want to usedikelihoed weighting to compute
P (Tampering | smoke A —~ report) .
The following table gives a few samples.

In this table, § is the sample; e is ~ smoke A report . The weightis P (e | s ), which is equal to P ( smoke |
Fire) * P (= report | LLeaving ) , where the value for Fire and Leaving are from the sample.

Tampering Fire Alarm Smoke Leaving Report | weight

false true  false  true true false 0.9 *¥0.25 = 0.225
true true true true false false 0.9 * 0.99 = 0.891
false false false true true false 0.01 * 0.25 = 0.0025

false true  false  true false false 0.9 ¥ 0.99 = 0.891

P ( tampering | — smoke A report ) is estimated from the weighted proportion of the samples that have
Tampering true
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Learning Objective:

38. Learning

39. Statistical Learning
39.1 Leaning with complete data
39.2 Learning with hidden variables

38. Learning

> Learning in Al is also called machine learning.

» Machine learning is an application of artificial intelligence that provides the systems to automatically learn and
improves from experience without being explicitly programmed.

> An agent is learning if it improves its performance on future tasks after making'ebservations about the world.
Learning is the improvement of performance with experience over time.

> Learning element is the portion of a learning Al system that decides how to modify the performance element
and implements those modifications.

» We all learn new knowledge through different methods, depending on the type of material to be learned, the
amount of relevant knowledge we already possess, and the environment in which the learning takes place.

39. Statistical Learning

Statistical Learning is Artificial Intelligenceds,a set of toolsfor machine learning that uses statistics and functional
analysis. In simple words, Statistical learningtinderstands’ from training data and predicting on unseen data.
Statistical learning is used to build predictive models based on the data. Statistical learning can be used to build
applications for computer vision, text analytics, voice recognition, etc. These tools broadly come under two classes:
supervised learning & unsupervised.learning;

Supervised Learning:

» Supervised learningAs aitype of machine learning method in which we provide sample labelled data to the
machine learning.systém 11t order to train it, and on that basis, it predicts the output.

The system créates amodel using labelled data to understand the datasets and learn about each data,
once the training and processing are done then we test the model by providing a sample data to check
whether'it 1§ predicting the exact output or not.

The\goal,of supervised learning is to map input data with the output data. The supervised learning is
based on supervision.

Theexample of supervised learning is spam filtering.

Supervised Learning is the one, where you can consider the learning is guided by a teacher. We have a
dataset which acts as a teacher and its role is to train the model or the machine. Once the model gets trained
it can start making a prediction or decision when new data is given to it.

YV V. VAV V V V

Supervised learning classified into two categories of algorithms:
1. Regression
2. Classification
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Separation SPam

Learns
® ®
Spam

Enables the machine to be trained to classify observations
\ into some class

Fig:- : Example of Supervised learning

Unsupervised Learning:

>
>
>
>
>
>

>

Unsupervised learning is a learning method in whieh a‘'machine learns without any supervision.
The training is provided to the machine with the, set ofiydata that has not been labelled, classified, or
categorized, and the algorithm needs to act on that data ‘without any supervision.
The goal of unsupervised learning is torestructuresthe input data into new features or a group of objects
with similar patterns.
In unsupervised learning, we don't have a‘predetermined result. The machine tries to find useful insights
from the huge amount of data.
The model learns through observation and finds structures in the data. Once the model is given a dataset,
it automatically finds patterns and relationships in the dataset by creating clusters in it. What it cannot do
is add labels to the cluster; like iticannot say this a group of apples or mangoes, but it will separate all the
apples from mangoes.
Suppose we presented images of apples, bananas and mangoes to the model, so what it does, based on
some patterns and relationships it creates clusters and divides the dataset into those clusters. Now if a new
data is fed to the model, ithadds it to one of the created clusters.
Unsupervised learning elassified into two categories of algorithms:

= (Clustering

= Association

Algorithm
i @ a
P>

Output

Fig:- Example of Unsupervised Learning
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Learning Objective:

39. Statistical Learning
39.1 Leaning with complete data
39.2 Learning with hidden variables

39.1Leaning with complete data

> Statistical learning methods are based on simple task parameter learning with complete data.“Parameter
learning involves finding the numerical parameters for a probability model with a fix structure. E.g: In Bayesian
network conditional probabilities are obtained for a given scenario. Data are complete when each point contains
values for every variable in a specific learning model.

> There are different method are present which are working in complete data,Lhosc are:
1. Maximum-likelihood parameter learning
2. Naive Bayes models
3. Continuous Model
4. Bayesian Parameter Learning

Parameter learning:

» Data are complete when each data point contains values forrevery variable in the probability model being
learned.

» Statistical learning methods begin with the simplest'task: parameter learning with complete data.
» Parameter learning is an important aspect ofdearning in Bayesian networks.

» Although the maximum likelihood algorithm, is/often effective, it suffers from over fitting when there
is insufficient data.

» Over fitting can occur when the hypothesis space is too expressive, so that it contains many hypotheses
that fit the data set.

» To address this, prior distributiefis of model parameters are often imposed.
» When training a Bayesiafi hetwork, the parameters of the network are optimized to fit the data.

» A Parameter learning'task involves finding the numerical parameters for a probability model whose
structure is fixed.

» Complete datagreatly sithplify the problem of learning the parameters of a complex model.

Maximum-likelihoed parameter learning: Discrete models
> Suppose, webuy a bag of lime and cherry candy from a new manufacturer whose lime—cherry
proportions-are completely unknown—that is, the fraction could be anywhere between 0 and 1.

» In'that case, we have a continuum of hypotheses.

» The parameter in this case, which we call 0, is the proportion of cherry candies, and the hypothesis is he.

» The proportion of limes is just 1 — 6.

» If we assume that all proportions are equally likely a priori, then a maximum likelihood approach is
reasonable.

» If we model the situation with a Bayesian network, we need just one random variable, Flavor (the flavor
of a randomly chosen candy from the bag).
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> 1t has values cherry and lime, where the probability of cherry is 0 (see Fig below)

> Now suppose we unwrap N candies, of which —¢” are cherries and | = N — ¢ are limeAccording to
Equation, the likelihood of this particular data set is:

N
P(d|hg) = ] P(dj|he) = 6°- (1 —06)".

=1

® The maximum-likelihood hypothesis is given by the value of 8 that maximizes this expression.

® The same value is obtained by maximizing the log likelihood.

N
L(d|hg) = log P(d|hgy) = Z log P(dj|hg) = clogf + £log(1 —0) .
=1

(By taking logarithms, we reduce the product to a sum over the data, whichgs usually’easier to maximize.)

® To find the maximum-likelihood value of 6, we differentiatel LI withaespect to 0 and set the resulting
expression to zero:
dl(dhg) ¢ ! PN
ot 0 1-6 e+l N
In English, then, the maximum-likelihood hypoth@sis tmr “asserts that the actual proportion of cherries
in the bag is equal to the observed propoftion imthe'\candies unwrapped so far.

Standard method for maximum-likelihood parameter l¢arning:
1. Write down an expression forthe likelihood of the data as a function of the parameter(s).
2. Write down the derivative of the log likelihood with respect to each parameter.
3. Find the parameter values suchthat'the derivatives are zero.

P(F=cherry)
0

P(F=cherry)

0
F P(W=red | F)

lime
Wrapper

(a) (b)

Fig :- (a) Bayesian network model for the case of candies with an unknown proportion of cherries and limes.
(b) Model for the case where the wrapper color depends (probabilistically) on the candy flavor.
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Naive Bayes models

> Probably the most common Bayesian network model used in machine learning is the naive Bayes model.
In this model, the —classl variable C (which is to be predicted) is the root and the —attributel variables X;
are the leaves.
The model is —naivel because it assumes that the attributes are conditionally independent of each other,
given the class.
The model in Fig.(b) is a naive Bayes model with just one attribute.
Assuming Boolean variables, the parameters are

0 =P(C =true),0; = P(Xi=true|C = true),8ip = P(X; = true|C = false).

» The maximum-likelihood parameter values are found in exactly the same way as for Fig, 7.3(b). Once
the model has been trained in this way, it can be used to classify new examples for which the class
variable C is unobserved.

> With observed attribute values x1, . . . , xn, the probability of each class is.given'by,

P(Clz1,...,2,) = a P(C) [T P(x:]C) .

» A deterministic prediction can be obtained by choosing-the maost likely class.

» The method learns fairly well but not as well as decision-tréenlecarning; this is presumably because the
true hypothesis— which is a decision tree—is not‘fepresentable exactly using a naive Bayes model.
Naive Bayes learning scales well to very large preblems: with n Boolean attributes, there are just 2n
+ 1 parameters, and no search is requifed tonfind hmr, the maximum-likelihood naive Bayes
hypothesis. Finally, naive Bayes learning has-ne,difficulty with noisy data and can give probabilistic
predictions when appropriate.

39.2 Learning with hidden variables

> Many real-world problems have hidden variables, which are not observable in the data that are available
for learning.

» For example, medicalyrecotds often include the observed symptoms, the diagnosis, and the treatment
applied, but they seldom eontain a direct observation of the disease itself.

» The hidden variable§,caff dramatically reduce the number of parameters required to specify a Bayesian
network. Thewbelow-Fig. which shows a small, fictitious diagnostic model for heart disease.

» There ar®thi€e observable predisposing factors and three observable symptoms (which are too depressing
to name), Assume that each variable has three possible values (e.g., none, moderate, and severe).

> Removing” the hidden variable from the network in (a) yields the network in (b); the total number of
parameters increases from 78 to 708.Thus, latent variables can dramatically reduce the number of
parameters required to specify a Bayesian network. This, in turn, can dramatically reduce the amount of
data needed to learn the parameters.

» Hidden variables are important, but they do complicate the learning problem. In below Fig.(a), for example,
it is not obvious how to learn the conditional distribution for Heart Disease, given its parents, because we
do not know the value of Heart Disease in each case; the same problem arises in learning the distributions
for the symptom:s.
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» This section describes an algorithm called expectation—maximization, or EM, that solves this problem in a
very general way.

» We will show three examples and then provide a general description. The algorithm seems like magic at
first, but once the intuition has been developed, one can find applications for EM in a huge range of
learning problems.

(Fig. : (a) A simple diagnostic network for heart disease, which is assumed.to be a hidden variable. Each
variable has three possible values and is labeled with the number ofindependent parameters in its conditional
distribution; the total number is 78. (b) The equivalent network with Heart Disease removed. Note that the

symptom variables are no longer conditionally independent.given their parents. This network requires 708
parameters.)

The EM Algorithm :It is a very general algorithm used, to lfearn probabilistic models in which variables are
hidden; that is, some of the variables are net observe@wModels with hidden variables are sometimes called
latent variable models.
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Learning Objective:
40. Rote Learning

41. Learning by taking advice

40. Rote Learning

> Rote learning is the basic learning activity. Rote learning is a memorization technique based ofi répetition.
It is also called memorization because the knowledge, without any modification, is simply copied into
the knowledge base. As computed values are stored, this technique can save a sigififieantamount’of time.

> Rote learning techniques can also be used in complex learning systems provided sophisticated techniques
are employed to use the stored values faster and there is a generalization to keep the number of stored
information down to a manageable level. Example: Checkers-playing progtam.

» The idea is that one will be able to quickly recall the meaning of the material the,mere one repeats it.
Ex:- 51=5%4%3*2%1=120
6!=51*6=120*6=720
> For example we may use this type of learning when we memorize' multiplication tables. In this method we
store the previous computed values, for which we do not have to‘recompute them later.

» Also we can say rote learning is one type of existing(or base [earning. For example, in our childhood, we
have the knowledge that “sun rises in the east”. Sq.in"our later stage of learning we can easily memorize
things. Hence in this context, a system may simply memorize previous solutions and recall them when
confronted with the same problem. Generally access of stored value must be faster than it would be to
recompute.

The idea is that one will be able to quickly recallithe meaning of the material the more one repeats it.

Some of the alternatives to roteglearning melude meaningful learning, associative learning, and active
learning. Uses this technique to learn the board positions it evaluates in its look-ahead search.

Rote learning is most basic learningyactivities when the computer stores the date it is performing
rudimentary form of learning;

Hence the act of storage allows the program to perform better in the future. Also, in the case of data
caching, we store computed value then we do not recompute again when the computation is more
expensive than this strategy ¢an save the significant amount of time.

> Hence caching has been used in Al program to produce some surprising performance improvements. Such
caching is known as'Rote learning.

Rote learningincludes'the capabilities:
» /Organized storage of information: In order to improve the performance and speed up to use the
stored value than it would be to recompute it. Then there must be a special technique that accesses
the stored value quickly.

» "Generalization: - Here the number of distinct object that stores is very large. So that to keep the
number of stored object manageable level some kind of generalization technique is necessary.

41.Learning by taking advice

» This is a simple form of learning. Suppose a programmer writes a set of instructions to instruct the
p g. Supp prog
computer what to do, the programmer is a teacher and the computer is a student. Once learned (i.e.
programmed), the system will be in a position to do new things.

» The advice may come from many sources: human experts, internet to name a few. This type of learning
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requires more inference than rote learning. The knowledge must be transformed into an operational form
before stored in the knowledge base. Moreover the reliability of the source of knowledge should be
considered.

The system should ensure that the new knowledge is conflicting with the existing knowledge. FOO (First
Operational Operationalised), for example, is a learning system which is used to learn the game of Hearts.
It converts the advice which is in the form of principles, problems, and methods into effective executable
(LISP) procedures (or knowledge). Now this knowledge is ready to use.

Computer program might make use of the advice by adjusting its static evaluation function to inelude a
factor depending on the other control. If we have designed a data structure for playing any.game then
first, we rule out all the advice before playing the game. Hence human user first translates the;adviee,then
plays the game.
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42. Learning In Problem Solving

» Humans have a tendency to learn by solving various real world problems.

» The forms or representation, or the exact entity, problem solving principle is based, on reimforcément
learning.

» Therefore, repeating a certain action results in a desirable outcome while the”agtion,is aveided if it
results into undesirable outcomes.

» As the outcomes have to be evaluated, this type of learning also involves the definition of a utility
function. This function shows how much is a particular outcome worth?

» In reinforcement learning, the system knows the desirable outcomes but does, not know which actions
result into desirable outcomes.

» Insucha problem or domain, the effects of performing the action§®are usually compounded with side-
effects. Thus, it becomes impossible to specify the actions to beperformed in accordance with the given
parameters.

> Q-Learning is the most widely used reinforcement learning algerithm.

> Learning in problem takes various techniques to improve the performance. Like that problem solver, solve
the problem by taking advice from someone else or teachies

Learning By Parameter Adjustment: The most important question in the design of a learning program
based on parameter adjustment. When the‘walue“6f\parameter increased and when the value of parameter
decreased. The second question is how muchishould the'value be changed. Hence the answer to the first
question is that value of parameter thatpredicted the final outcome accurately should be increased while the
value of parameter of poor predictorsrsheuld be decreased. In designing the program, we have to know a
priority how much weight should be attachedto each feature being used. The solution of this we estimate the
weight of problem through solvidg.

Learning By Chunking: Chunking is the process similar to macro-operators. The idea of chunking comes
from psychological litefature on”memory and problem solving. Its computation basis is in production
systems. So that solving the preblem we have to define the number of productions in the memory depending
upon the problemwe calledChunk from memory and solve the problem.
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43. Learning from Examples: Induction Learning

>
>
>
>
>
>
>
>

Y

This involves the Process of learning by example.
Here the system tries to induce a general rule from a set of observed instances.The learning methed extracts
rules and patterns out of massive datasets.
The learning a process belongs to supervised learning,does classificationdand construct class
definitions, called induction.
Inductive learning also called Concept Learning is a way in which Al systems try to use.a generalized
rule to carry out observations.
The data is obtained as a result of machine learning or from domain experts ‘(humans) where it is
used to drive algorithms often called the Inductive Learning Algorithms (A LIs)that are used to generate
a set of classification rules.
Generally inductive learning is frequently used by humans. This fofm of'learning is more powerful than
the others.These classification rules that are generated are in the "Ifthis then that" form.
These rules determine the state of an entity at each iteration st€pun Dearning and how the Learning can
be effectively changed by adding more rules to the eXisting rule set.
When the output and examples of the function are fedyinto the AT. system, inductive Learning attempts
to learn the function for new data.
There are two methods for obtaining knowledge inshe neal world: first, from domain experts, and second,
from machine learning.
Domain experts are not very useful ordeliable for Iarge amounts of data. As a result, we are adopting a
machine learning approach for this project.
The other method, machine leatning, replicates/the logic of 'experts' in algorithms, but this work may
be very complex, time-consuming, and expensive.
As a result, an option is the inductive algorithms, which generate a strategy for performing a task
without requiring instruction ateachystep.
If we are given input samplesy(¥),given to a function fand the output sample is (f(x)) .Then we can give
different set of inputs(rayg inputs)=to the same function f and verify the output f(x).
By using the outputs we generate (learn) the rules.

Example:

Mango->f(Mango)->Sweet(el)
Banana->f(Banana)->Sweet(e2)

Fruits->f(fruits)->Sweet(General)
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System
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Hypothesis
(Procedure to Classify
New Examples)

Fig.: Inductive Learning
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44. Explanation Based Learning

> Explanation Based Learning or Explanation based generalization (EBG) is an algorithm® for
explanation based learning.

» It has two steps: first, explain the method and secondly, generalize the method.

> During the first step, the domain theory is used to prune away all the unimportaht aspects of tfaining
examples with respect to the goal concept.

» The second step is to generalize the explanation as far as possible while still describing thesgoal concept.

» In Explanation Based Learning (EBL), agent learns by examining pdrtigularisituations and relating
them to gained knowledge base. Also agent makes use of this gained knowledge fop€olving similar type
of problems.

» EBL architecture takes two inputs from the environment: Specific,goal fand*partial solution. Problem
solver processes these inputs and gives justification to generalizem

» Generalizer takes general concepts as input from the knowledge base and compared the explanation
of the problem solver with it to come up with solutiofl to the giveniproblem.

Learning by Generalizing Explanations:

Given that

= Goal (e.g., some predicate calculus statement)

= Situation Desetiption (facts)

* Domain Theory (inference rules)

= QOperationality Criterion
> Use problem solver to justify, using thetules, the goal in terms of the facts.
» Generalize the justification as i much as possible.

» The operationality criterion,states"Which other terms can appear in the generalized result.

An Explanation (detailed proof of goal)
goal

facts

After Learning (go directly from facts to solution):
goal

Fig.: Standard Approach to EBL
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Unification-Based Generalization

> An explanation is an inter-connected collection of “pieces” of knowledge (inference rules, rewrite rules,
etc.)
These “rules” are connected using unification, as in Prolog .

» The generalization task is to compute the most general unifier that allows the “knowledge pieces” to
be connected together as generally as possible

Sample EBL Problem

Initial Domain Theory
knows(?x,?y) AND nice-person(?y) -> likes(?x,?y)
animate(?z) -> knows(?z,?7z)
human(?u) -> animate(?u)
friendly(?v) -> nice-person(?v)
happy(?w) -> nice-person(?w)
Specific Example
Given human(John) AND happy(John) AND male(John),
show that likes(John,John)

Explanation to Solve Problem

likes(John,John)

/@\

knows(John,John) nice-person(John)

T

animate(John)

T

human(John) happy(John)

Explanation Structure
likes(John,John)

Necessary Unifications:

likes(?x,? ;
! Kox.2y) All variables must match ?z

-
I
|
knows(?x,?y) nice-person(?y) : Resulting Rule:
| | | | | | | human(?z) AND happy(?z) ->
knows(?z,7z) nice-person(?w) | likes(?z,72)
A
t |
animate(?z) |
|
I
|
I
I

animate(?u)

T

human(?u) happy(?w)

human(John) happy(John)
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EBL Architecture:

(Partial)
External |
Solution |

Specific
Goal/Problem

— 0 — —
7
7

Knowledge f Problem Solver
Base 'L (Understander)

New General
Explanatlon

Concept
\[ Generalizer }/

Fig.: EBL Architecture

Problem Solver:

It accepts 3 types of external inputs.

1. Goal concept is a problem statement in a complex foun afid agent needs to learn it.

2. Training examples are facts which explain an instance of the goal concept.

3. Inference rules represent the facts andgprot@cols Wihich show what learner already knows.

Generalizer: Output of the problem Solwer/1S @iven\as input to the generalizer which compares the
explanation of problem solver with knowledge bage and gives output to the operationally pruner.
Operationally pruner: It takes twae,inputs op€ from generalized and one from operationally standard.
Operationally standard gives descrigtiog of the final concept; also it specifies the form in which learned
concept should be expressed.

Operationality |

standards
| Goal

| concept

Training \[Froblem | " Gener;I
example —solver 7 Generalizer L4 Operationality ~ }——}
pruner

Inference rules

Fig.: Working of Problem Solver, Generalizer and Operationally pruner

122 | Page




Module-4 Lecture-48

Learning Objective:
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45. Discovery and Analogical Learning

Discovery

> Discovery is a restricted form of learning in which one entity acquires knowledge without{the help of a
teacher.

> Discovery learning takes place in problem solving situations where learners“interactwith their
environment by exploring and manipulating objects, wrestling with questions and“eontroversies, or
performing experiments, while drawing on their own experience and priefyknowledge.

Analogical Learning/Learning by Analogy:

> 1t is the process of learning a new concept or solution through the use of similar known concepts or
solutions.

> We use this type of learning when solving problems on an exam where pteviously learned examples serve
as a guide or when making frequent use of analogical learnipg.“Ehisiferm of learning requires still more
inferring than either of the previous forms.

> ltisa powerful inference tool.

> It generally involves abstracting details from a“particular et of problems and resolving structural
similarities between previously distinct problems.

> Analogical reasoning refers to this processgef rg€oghition and then applying the solution from the known
problem to new problem.

> Tt involves developing a set of mappingsBetweenfeatures of two instances.

Analogical Reasoning Steps

Retrieve:- Retrieve cases from«memory that are relevant to solving it.

Reuse:- Map the solution froim preyious case to the target problem. This involves adapting the solution
to fit new solution.

Revise:- Test the new,solutign to real world and, if necessary, revise.

Retain:- After the s@lutton has been successfully adapted to target problem, store the resulting experience
as the new case gaunemory.

Transfermational Analogy:

B _Swuppese/we are asked to prove a theorem in plane geometry.

¥ “We might look for a previous theorem that is very similar and copy its proof, making substitutions
wheén necessary.

®  The idea is to transform a solution to a previous problem in to solution for the current problem.

Fig.: Transformational Analogy
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Derivational Analogy

It only looks at the final solution.

Often the twists and turns involved in solving an old problem are relevant to solving a new
problem.

The detailed history of problem solving episode is called derivation.

Analogical reasoning that takes these histories into account is called derivational analogy.

Fig.: Derivational Analogy
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46. Formal Learning Theory

Formal learning theory is the mathematical embodiment of a normative epistemology. It deals with the
question of how an agent should use observations about her environment to arrive at correct:and infermative
conclusions.

e Given positive and negative examples.

e Produce algorithm that will classify future examples correctly with probability 1/h

Complexity of learning :
(i) The error tolerance (h).

(if) The number of binary features present in the examples (t).
(i) The size of the rule necessary to make the discrimination (f).

If the number of training examples required is polynomial in h,t, andif—then the concept is learnable.
Few training examples are needed— learnable we restei¢tthelearner to the positive examples only.

For example from the list of positive and negative examples,of'elephants shown in the figure below we
want to induce the description “gray mammal,large?

gray? mammal? large? vegetarian? wild?
+ + + + {Elephant)
+ - {Elephant)
+ {Mousa)
+ {Giraffe)
- {Dinosaur)

" (Elephant)

Fig../ Six positive and negative examples of the concept Elephant
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47.Neural Net Learning
Biological Neural Network:

> Biological neural network describes about the working principle of human brain.

» Brain is a most powerful computing machine from others. The inner working of human brain is/built on
concept of neurons and the networks of the neurons known as biological neural network.

» The brain contains more than 86 billion neurons. The neurons are connectedand communicdte with other
neurons through axons.

» Dendrites are used for taking input from external environment or sensoryhorgans. The electrical signal
created by the input and these are quickly pass through the neural network and send to the other neuron
through synapse to handle the issue.

axon of \)

previous

\ - wy
neuron {
neuron cell body \ \

nucleus

neuron cell body

dendrites of

) / axon
/ tips ~ Mext meuron

electrical

\ \ signal

dendrites

Fig.: Structure of a biological neuron

Artificial Neural Network (ANN):

» Neural net¥ork or ANN is based on biological neural network.

> Here multiplesnodes are act as neurons. The neurons or nodes are interconnected and communicate with
each other by links.

» ANN contains three layers. First layer is known as input layer, second layer is known as hidden layer and
thirdyJayer is known as output layer.

> Each layer contains one or more neurons.

» The nodes of the input layer can take input data and perform operations on it and send the results of these
operations to other neurons of the hidden layer. The hidden layer sends data to the output layer.

» The output of each node is known as its activation or node value.

» For increase the problem solving capabilities, we can increase the number of hidden layers and number
of neurons in any given layer, and number of paths between neurons.
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input layer hidden layer 1 hidden layer 2 output layer

Fig.: Structure of Artificial Neural Network (ANN)

» In the network or model, each link assigned with some weight.

» Weight is nothing an integer number that controls the signal between the two neurons. If the network
generates a “good or desired” output, there is no need to adjust the weights,

» However, if the network generates a “poor or undesired” output or an ‘érroryithen the system update the
weights in order to improve subsequent results.

Fig« Structure/of Artificial Neural Network (ANN) with weights

Working of ANN

» At First, infermatipn™is feed into the input layer which then transfers it to the hidden layers, and
interconneetiontbetween these two layers assign weights to each input randomly at the initial point and
then bias,is’addedite each input neuron and after this, the weighted sum which is a combination of
weights andsbias is passed through the activation function.

Activation Function has the responsibility of which node to fire for feature extraction and finally output
18 calculated.

This,whole process is known as Foreword Propagation.

After getting the output model to compare it with the original output and the error is known and finally,
weights are updated in backward propagation/back propagation to reduce the error and this process
continues for a certain number of epochs (iteration). Finally, model weights get updated and prediction
is done.

Bias- It is an additional parameter in the Neural Network which is used to adjust the output along with
the weighted sum of the inputs to the neuron.
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Types of ANN

There are two important types of Artificial Neural Networks —
» FeedForward Neural Network
» FeedBack Neural Network
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48. Genetic Learning

» Genetic Algorithms are algorithms that are based on the evolutionary idea of natural selgction“and
genetics. GAs are adaptive heuristic search algorithms i.e. the algorithms follow an it€tative'pattern,that
changes with time. It is a type of reinforcement learning where the feedback is nee@ssaty withouttelling
the correct path to follow. The feedback can either be positive or negative.

» A genetic algorithm (GA) is a heuristic search algorithm used to solve search and optimization problems.
This algorithm is a subset of evolutionary algorithms, which are used in computation. Genetic algorithms
employ the concept of genetics and natural selection to provide solutions to preblems.

» These algorithms have better intelligence than random search algorithms because’they use historical data
to take the search to the best performing region within the solution space.

» GAs are also based on the behaviour of chromosomes and their’ geneticyStructure. Every chromosome
plays the role of providing a possible solution. The fitness functiomhelps in providing the characteristics
of all individuals within the population. The greater the funetion, the better the solution.

Working of Genetic Algorithm:

Initialization: The genetic algorithm starts gy generating,an initial population. This initial population consists
of all the probable solutions to the given‘prablem. The most popular technique for initialization is the use of
random binary strings.

Fitness assignment: The fitness functiomhbelps in establishing the fitness of all individuals in the population.
It assigns a fitness score to every_individual, which further determines the probability of being chosen for
reproduction. The higher the fitness/score, the higher the chances of being chosen for reproduction.
Selection: In this phase, individuals.are selected for the reproduction of offspring. The selected individuals
are then arranged in pairs-@f twe,te enhance reproduction. These individuals pass on their genes to the next
generation.

The main objective(of this‘phase is to establish the region with high chances of generating the best solution
to the problem-(better than the previous generation). The genetic algorithm uses the fitness proportionate
selection technigue to ensure that useful solutions are used for recombination.

Reproduction This phase involves the creation of a child population. The algorithm employs variation
operaters that are applied to the parent population. The two main operators in this phase include crossover
and mugation.

Crossover: This operator swaps the genetic information of two parents to reproduce an offspring. It is
performed on parent pairs that are selected randomly to generate a child population of equal size as the parent
population.

Mutation: This operator adds new genetic information to the new child population. This is achieved by
flipping some bits in the chromosome. Mutation solves the problem of local minimum and enhances
diversification. The following image shows how mutation is done.
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Before Mutation
A5 [1]1]1]0]|0]0]

After Mutation
A5 [1]1]0][1]1]0]

Replacement: Generational replacement takes place in this phase, which is a replagément” ofathe Jold
population with the new child population. The new population consists of higher fitness s¢ores than the old
population, which is an indication that an improved solution has been generated.

Termination: After replacement has been done, a stopping criterion is4lsed 4@, provide the basis for
termination. The algorithm will terminate after the threshold fitness solution has begen attained. It will identify
this solution as the best solution in the population.

Application of Genetic Algorithms

Genetic algorithms have many applications, some of them are —

Recurrent Neural Network
Mutation testing

Code breaking

Filtering and signal processing
Learning fuzzy rule base etc

Limitations of Genetic Algorithms:

1.
2.
3.

Computational Cost: GAs often require significant computational resources due to the evaluation of
large populations over multiple generations, especially for complex problems.

Premature ConvergenceaThere is a risk of the algorithm converging to local optima, particularly if
diversity within the pépulationis not maintained.

Dependence on Ritness'Eunction: The performance of GAs heavily relies on the quality and design of
the fitness function:yPoorly defined fitness functions can lead to suboptimal solutions or slow
convergence:

Advantages of‘Genetic-Algorithms

Genetic Algorithms/(GAs) offer several unique advantages, making them highly effective for solving complex
optimizationyproblems:

1
2.
3.

Global Optimization: GAs are capable of finding global optima in complex, nonlinear, and high-
dimensional search spaces, avoiding the pitfalls of local optima that plague traditional methods.
Adaptability: They can be applied to a wide range of problems, including combinatorial optimization,
continuous optimization, and machine learning tasks, showcasing their versatility across domains.

No Gradient Requirement: Unlike gradient-based optimization methods, GAs do not rely on
differentiable functions. This makes them suitable for problems with non-differentiable or discontinuous
fitness landscapes, where traditional approaches fail.
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49. Expert System
49.1 Characteristics of Expert System
49.2 Advantages of Expert System
49.3 Disadvantages of Expert System

49. Expert System

» An expert system is a computer program that is designed to solve complex problems and to provide
decision-making ability like a human expert. It performs this by extracting knowledgefromftsknowledge
base using the reasoning and inference rules according to the user queries.
The data added in the knowledge base is added by humans that are expert‘in a particular domain and this
software is used to acquire some information.
These systems are designed for a specific domain, such as medicine, sci¢n¢e, etc.
The expert system can advise users as well as provide explanations to them about how they reached
a particular conclusion or advice.
The expert system is a part of Al, and the first ES was developed inithe year 1970, which was the first
successful approach of artificial intelligence.One of the common examples of an ES is a suggestion of
spelling errors while typing in the Google search box.

Examples of Expert Systems:

MYCIN: It was based on backward chaining/andycould identify various bacteria that could cause acute
infections. It could also recommend drugs based.on the patient's weight.

DENDRAL: This Expert system used-fore chemical analysis to Predict molecular structure.

PXDES: This Expert system used to prediet the degree and type of lung cancer.

CabDet: Expert system that could identify. cancer at early stages.

49.1 Characteristics o' Expert’System

An expert system is usually’designed to have the following general characteristics.

. High level Performanee: The system offers the highest level of expertise. It provides efficiency,
accuracy and imaginative problem solving.

. Good Reliability: The expert system must be as reliable as a human expert.

. Adequate Response’time: The system should be designed in such a way that it is able to perform within
a small amount of time, comparable to or better than the time taken by a human expert to reach at a decision
point.

. Understandable: The system should be understandable i.e. be able to explain the steps of reasoning
while” executing. The expert system should have an explanation capability similar to the reasoning ability
of human experts.

. Use symbolic representations: Expert system use symbolic representations for knowledge (rules,
networks or frames) and perform their inference through symbolic computations that closely resemble
manipulations of natural language.

. No memory Limitations: It can store as much data as required and can memorize it at the time of its
application. But for human experts, there are some limitations to memorize all things at every time.
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49.2 Advantages of Expert System:

(i) It improves the decision quality.

(ii) Reduce the number of human errors.

(iif)Offers consistent answer for the repetitive problem.

(iv)Helps you to get fast and accurate answers.

(v) Capable of explaining how they reached a solution.

(vi)Hold huge amounts of information.

(vii)Artificial Intelligence Expert Systems can steadily work without getting emotionald tens¢d o tired”

49.3Disadvantages of Expert System:

(i) Errors in the knowledge base can lead to wrong decision.

(if) The maintenance cost of an expert system is too expensive.

(iii)It is developed for a specific domain.

(iv) It needs to be up dated manually. It does not learn itself.

(V) Not able to recognize when there is no answer.

(vi) There is no flexibility and ability to adapt to changing envisenments:
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50. Architecture of Expert System

Architechure of Expert System

Questions

Explanation Woriing

System
User y Memory

Interface

Questions Inference

Engine

Knowledge
Base

knowledge

Knowledge
Acquisition
System

Expert
Interface Debugging

Expert System SheIIJ
> W/

CZ Fig. :Architecture of Expert System
. ists of the following given three major components:

> T owledge base contains the knowledge necessary for understanding, formulating and for solving
problems.

» It is a warchouse of the domain specific knowledge captured from the human expert via the knowledge
acquisition module.

» Thus we can say that the success of the Expert System Software mainly depends on the highly accurate and
precise knowledge.

» The knowledge base of an ES is a store of both, factual and heuristic knowledge.
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Factual Knowledge:- It is the information widely accepted by the Knowledge Engineers and scholars,
typically found in textbooks or journals in the task domain.

Heuristic Knowledge:- It is about practice, accurate judgement, one’s ability of evaluation, real life
experiences and guessing.

Knowledge Acquisition

The term knowledge acquisition means how to get required domain knowledge by the expert system. The
entire process starts by extracting knowledge from a human expert, converting the acquired knowdedgeunto
rules and injecting the developed rules into the knowledge base.

//V -\\
Knowledge /// EXtrac \ E rt
Base Q\\////><::I Xpe

2. Inference engine:

The inference engine is the brain of the expert system. Inference engine centains rules to solve a specific
problem. It refers the knowledge from the Knowledge Base, It selects,facts.and rules to apply when trying to
answer the user's query. It provides reasoning about the information in the knowledge base. It also helps in
deducting the problem to find the solution. This component.is/alse helpful for formulating conclusions.

3. User Interface:

The user interface is the most crucial part ofthe EXpert, System Software. This component takes the user's
query in a readable form and passes it to the inference engine. After that, it displays the results to the user.
In other words, it's an interface that helps the‘user communicate with the expert system.

Other components are:

Working Memory

Contains facts about a problem,that are discovered during consultation with expert system.
System matches this information with knowledge contained in the knowledge base to infer new facts.
The inferred facts are added'to the working memory.
If forward chaining is used: It helps to describe the current running problem and record intermediate
output.
Records Intermediate Hypothesis & Decisions: 1. Plan, 2. Agenda, 3. Solution

Explanation System

» Ttilelps to trace responsibility and justify the behaviour of expert system by firing questions and
answers, such as Why, How, What, Where, When, Who. This module helps in providing the user with
an explanation of the achieved conclusion.

Participants in the development of Expert System

There are three primary participants in the building of Expert System:
1. Expert: The success of an ES much depends on the knowledge provided by human experts. These
experts are those persons who are specialized in that specific domain.
2. Knowledge Engineer: Knowledge engineer is the person who gathers the knowledge from the
domain experts and then encodes that knowledge in a form that can be used by the expert system.
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3. End-User: This is a particular person or a group of people who may not be experts, and working on
the expert system needs the solution or advice for his queries, which are complex.

51. Expert System Shell

An expert system shell is a software development environment containing the basic components (Explanation
facility, Reasoning capacity, Inference engine, user interface etc.) for building expert systems. It does not
contain knowledge base. In other words, we can say that it is a readymade expert system without
knowledge base. For every domain specific system, a knowledge engineer prepares knowledge lsase with
the help of domain experts in a particular area. For example, if the knowledge engineer feedsexpertievel
knowledge of ‘diagnosis of papaya plant ‘then the tool will behave as an expert system for'diagnasis’of,papaya
plant. Thus an expert system shell provides a quick way of developing expert system,

Example of Expert System Shell:

(i) CLIPS (C Language Integrated Production System)

(if) OPS5 and Eclipse

(iif)Java Expert System Shell (JESS) that provides fully developed Java APhfor Créating an expert system.

(iv) Vidwan, a shell developed at the National Centre for Software Technolagy, Mumbai in 1993. It enables
knowledge encoding in the form of IF-THEN rules.

52. Applications of Expert System

The following shows where ES can be applied.

I. Information management

ii. Hospitals and medical facilities

iii. Employee performance evaluation

Iv. Virus detection

v. Useful for repair and maintenance projects

vi. Process monitoring and control
vii. Supervise the operation of the plantand controller
viii. Stock market trading

ix. Airline scheduling

X. Automobile design etc.
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53. Knowledge Acquisition
53.1 Knowledge Acquisition Techniques

53. Knowledge Acquisition
» Knowledge Acquisition is the process of obtaining, gaining, extracting, receiving, and/acquiring

knowledge from the human experts, machines, specialist and high-qualified persons for an expert'system,
which must be carefully organized into rules or some other form of knowledge representation.

» Knowledge acquisition ropes the generation of knowledge-based systems through the‘growth of ethics,
procedures, methodologies and tools.

53.1 Knowledge Acquisition Techniques
The following list introduces a few types of techniques used for acquiring, amalysing and modelling knowledge:
A. Protocol Generation Techniques:

The aim of these techniques is to produce a protocol, i'e-arecord of behavior, whether in audio, video or
electronic media. Audio recording is the usual methed, which is then transcribed to produce a transcript. It
is include various types of interviews (unstructured, semi-structured and structured), reporting techniques
(such as self-report and shadowing) and observational techniques.

Interviews: The interview is the most commonly used knowledge elicitation technique and takes many
forms, from the completely unstructured interview to the formally planned, structured interview. It is a KA
technique in which the knowledge engineer asks questions of the expert or end user .

Observation: Simply observing and making notes as the expert performs their daily activities can be useful,
although a time-consuming process. Videotaping their task performance can be useful especially if combined
with retrospective reporting‘techniques.

Commentary: These technigues generate protocols by having the expert provide a running commentary on
a typical task used in the domain. In on-line PA, the expert is being recorded solving a problem, and
concurrently a commentary is made. The nature of this commentary specifies two sub-types of the on-line
method.

The basic(technique here is the self-report: The expert performing the task may be describing what they
are doing as preblen solving proceeds.

Shadowing; A variant on this is to have another expert provide a running commentary on what the expert
performing the task is doing. This is called shadowing.

Off-line PA: This allows the expert(s) to comment retrospectively on the problem solving session - usually
by being shown an audio-visual record of it. An advantage of this is that the video can be paused or run at
slow speed to allow time for full explanation. Variants of these reporting techniques involve a second expert
commenting on another expert’s performance or there could be group discussion of the protocol by a number
of experts including its .
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B. Laddering Techniques

Laddering techniques involve the construction, reviewing modification and validation of hierarchical
knowledge, often in the form of ladders (i.e. tree diagrams).Here the expert and knowledge engineer both
refer to a ladder presented on paper or a computer screen, and add, delete, rename or re-classify nodes as
appropriate.

Laddering means setting elements in a ladder according to a common criterion in order to visualize, them
(easier for the expert) and confirm model completion (and, in rule systems generate the knowledge,in the
form of rules)

Concept Ladder: It shows classes of concepts and their sub-types. All relationshipsdn the ladder, there is a
relationship, also is more commonly known as a taxonomy and is vital to representingiknowledge in almost
all domains.

Composition Ladder: It shows the way a knowledge object is composed,of its genstituent parts. All
relationships in the ladder are the part or part-of relationship. Also is a useful way of‘understanding complex
entities such as machines, organisations and documents.

Decision Ladder: It shows the alternative courses of action for a particular’degiSion. It also shows the pros
and cons for each course of action, and possibly the assumptions far.each,pro and con. It is a useful way of
representing detailed process knowledge.

Attribute Ladder: It shows attributes and values. All the adjectival values relevant to an attribute are shown
as sub-nodes, but numerical values are not usually shownyit'ts awseful way of representing knowledge of all
the properties that can be associated with concepts in a domain:

Process Ladder: It shows process (tasks, activities) and the sub-processes (sub-tasks, sub-activities) of
which they are composed. All relationships are thespart of relationship; it is a useful way of representing
process knowledge.

C. Matrix-based Techniques

It involves the construction ofgrids indicating such things as problems encountered against possible
solutions. Important types_include the use of frames for representing the properties of concepts and the
repertory grid technique«sed to elicit, rate, analyze and categorize the properties of concepts .

Frames: Frames.are a way"of representing knowledge in which each concept in a domain is described by a
group of attribates and values using a matrix representation. The left-hand column represents the attributes
associated with thexconcept and the right-hand column represents the appropriate values. When the concept
is a classptypical (default) values are entered in the right-hand column. The use of frames can also be adopted,
although,this would typically be used for validating previously acquired knowledge rather than for eliciting
knoewledge from scratch.

Timeline: A timeline is a type of tabular representation that shows time along the horizontal axis and such
things as processes, tasks or project phases along the vertical axis. It is very useful for representing time-
based process or role knowledge. It can also be used to acquire time-based knowledge. It is a simple
representation that is often used in the early stages of knowledge elicitation to capture the basic of processes
from the expert.

Matrix: A matrix is a type of tabular representation that comprises a 2-dimensional grid with filled-in grid
cells. Ticks, crosses or comments in the matrix cells indicate which row object is applicable to which column
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object. Two kinds of matrix are attributed matrix and relationship matrix.
Forms: A more recent form of knowledge model is the use of hypertext and web pages, in which
relationships between concepts, or other types of knowledge, are represented by hyperlinks. This affords the

use of structured text by making use of templates, i.e. generic headings. Different templates can be created
for different knowledge types.
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