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SYLLABUS 

 

 
Module 1:          (8 hours)  

Concept of determinate and indeterminate structures, determination of degree 

of static and kinematic indeterminacy in plane frame and continuous 

structures. Methods of Analysis: Equilibrium equations, compatibility 

requirements, Introduction to force and displacement methods. Analysis of 

propped cantilever by consistent deformation method, Analysis of fixed and 

continuous beams by Moment-Area method, Conjugate beam method and 

theorem of three moments. 

  

Module 2:          (7 hours)  

Energy theorems and its application, Strain energy method, Virtual work 

method, unit load method, Betti’s and Maxwell’s laws, Castigliano’s theorem, 

concept of minimum potential energy.  

 

Module 3:          (7 hours)  

Analysis of redundant plane trusses. Deflection of pin jointed plane trusses. 

Analytical method and Williot –Mohr diagram. Introduction to space truss.  

 

Module 4:          (7 hours)  

Rolling loads and influence lines for determinate structures, simply supported 

beams, cantilever, ILD for reaction, shear force and bending moment at a 

section, ILD for wheel loads, point loads and udl, maximum bending moment 

envelope.  

 

Module 5:          (7 hours)  

Analysis of three hinged arches, Suspension cable with three hinged stiffening 

girders subjected to dead and live loads, ILD for Bending Moment, Shear 

Force, normal thrust and radial shear for three hinged arches.  



Books  

• Theory and Problems in Structural Analysis by L Negi, Mc Graw Hill  

• Structural Analysis by T.S. Thandamoorthy, Oxford University Press  

• Basic Structural Analysis by C S Reddy, McGraw Hill  

• Elementary Structural Analysis by Norris and Wilber, McGraw Hill  

• Structural Analysis by Aslam Kassimali, Cengage Learing  

• Structural Analysis by R.C. Hibbeler, Pearson Education  

 

Digital learning courses  

 

Course name: Structural Analysis 1  

Couse link: https://archive.nptel.ac.in/courses/105/105/105105166/  

Course Instructor: Prof Amit Shaw 

https://archive.nptel.ac.in/courses/105/105/105105166/
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MODULE 1       CHAPTER 1 

         Session 1 

INTRODUCTION 

Learning objective: 

Students will be able to understand 

• What is structure. 

• Various type of structures. 

• What is equilibrium and compatibility conditions. 

1.1  Introduction 

Structure: 

A system subjected to elastic deformation on applying loads, the deflected profile is 

non-linear because of internal resistance. If the load is removed and if it can 

comeback to its original position, it is a “structure”. 

 

[Fig. 1.1] 

Mechanism: 

Unstable structures are called mechanisms. On removal of load, deformation 

doesn’t disappear i.e., system can’t comeback to it’s original state. Deflected 

profiles are linear as shown in Fig. 1.2 

 

Mechanism 

[Fig. 1.2] 
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1.2  Classification of Structures: 

1.2.1 Based on predominant dimensions of members 

a. Skeletal structures 

One dimension predominant. (Linear or non-linear) 

 

E.g.: 

 

[Fig.1.3: Building Frame]      [Fig.1.4: Truss]  

 

b. Surface Structure 

Idealized to plane (or) curved surface. 

 

E.g.: 

 

 

 

 

 

 

 

[Fig.1.5: Slab] 

 

c. Solid structures 

Structures neither be idealized to a skeleton nor to a plane. 

E.g.: massive foundation 
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1.2.2. Based on the dimensions of frames 

a Plane frame 

All the members assumed to be in one plane. If loaded, member is 

subjected to one axial force, one shear force, one bending moment. 

E.g.: Pin jointed Plane frame, Rigid jointed plane frame. 

b Space frames 

All the members don’t lie in one plane.  

      E.g.: Pin jointed space frame, Rigid jointed space frame. 

 

1.2.3. Based on type of Joints 

a. Pin jointed Structure 

Structures are subjected to axial forces. Shear force and Bending 

moment are neglected. 

b. Rigid jointed structure 

The joints are assumed to be rigid, so that the angles between the 

members remain unchanged. These frames are subjected to bending 

moments, shear force, axial forces and twisting moments. 

 

1.3 Assumptions: 

• Materials are homogeneous and isotropic. Homogeneous material refers to 

the identical properties that exist in one direction throughout the material. 

And Isotropic material refers to that type of material which is identical in all 

directions. 

• Stress-strain behavior/relations are linear, i.e., within proportionality limit. 

(𝑠𝑡𝑟𝑒𝑠𝑠 ∝ 𝑠𝑡𝑟𝑎𝑖𝑛) 

• Law of superposition holds good. 

• Deflections & slopes are assumed to be small. 
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MODULE 1       CHAPTER 1 

         Session 2 

Learning objective: 

• Understand the equilibrium condition. 

• Understand the compatibility condition. 

 

1.4  Equilibrium Conditions: 

Deals with balancing of forces, so that the structure considered to be in equilibrium, 

if initially at rest remains rest and when subjected to system of forces will not 

undergo rigid body motion. 

a. For plane frame – 

∑ 𝐹𝑋 = 0, ∑ 𝐹𝑌 = 0, ∑ 𝑀𝑋𝑌 = 0 

• Minimum 3 equilibrium equations for plane frame (whether pin jointed or 

rigid jointed) 

• The plane frame shall be safe against overturning, hence even for in jointed 

trusses  ∑ 𝑀𝑋𝑌 = 0 

 

 

 

 

 

➢ Pin joint of plane frame- 

∑ 𝐹𝑋 = 0, ∑ 𝐹𝑌 = 0 

Two equilibrium equations. 

 

➢ Rigid joint of a plane frame- 

 

∑ 𝐹𝑋 = 0, ∑ 𝐹𝑌 = 0, ∑ 𝑀𝑋𝑌 = 0 

Fx 

Fy 

 

Mxy 

X 

Y 

Z 
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b.For space frames- 

∑ 𝐹𝑋 = 0, ∑ 𝐹𝑌 = 0, ∑ 𝐹𝑍 = 0 

∑ 𝑀𝑌𝑍 = 0, ∑ 𝑀𝑥𝑧 = 0, ∑ 𝑀𝑋𝑌 = 0 

 

➢ Pin joint- 

∑ 𝐹𝑋 = 0, ∑ 𝐹𝑌 = 0, ∑ 𝐹𝑍 = 0 

 

➢ Rigid joint-  

∑ 𝐹𝑋 = 0, ∑ 𝐹𝑌 = 0, ∑ 𝐹𝑍 = 0 

∑ 𝑀𝑌𝑍 = 0, ∑ 𝑀𝑥𝑧 = 0, ∑ 𝑀𝑋𝑌 = 0 

 

1.5  Compatibility Condition: 

Deals with balancing of slopes & deflections (or) member displacements. 

1.5.1 For 2-D systems (Plane frame) 

𝜃 = 0, 𝛿𝑉 = 0, 𝛿𝐻 = 0 

1.5.2 For 3-D systems (space frame) 

No. of compatibility equation at a support 

   = no. of reaction components 

 

------------------------------------------------- 

Probable Questions: 

i. What is difference between structure and mechanism? (2 marks) 

ii. What are the types of structure?     (6 marks) 

iii. What are the assumptions made?    (2 marks) 

iv. What is the Equilibrium condition?    (2 marks) 

v. What is the compatibility condition?    (2 marks) 
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MODULE 1       CHAPTER 2 

         Session 3 

Learning objectives 

Students will be able to understand 

• Types of supports with reaction forces. 

• Types of end conditions with compatibility condition. 

• Various stability condition. 

 

2.1 Types of Supports & its reactions 

   

2.2  Types of Supports and its compatibility condition: 

 

2.3  Stability Of Structures: 

2.3.1 External Stability 

• Minimum reaction components shall be developed for external stability. 

To ensure equilibrium, the members and the whole structure should be 

stable. 

Sl no. 

1 

2 

3 

4 

no. of 

reactions 

2 

1 

3 

4 

Sl. 

No. 

Type of support Sketch Displacements 

1 End Pin 

 

θ ≠ 0 

δH= 0 

δV= 0 

2 End Roller 

 

θ ≠ 0 

δH ≠ 0 

δV = 0 

3 Fixed End 

 

θ = 0 

δH = 0 

δV = 0 
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• Partial constraint: 

 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠(𝑟) < 𝑛𝑜. 𝑜𝑓 𝑒𝑞𝑢𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠(3) 

• Improper constraint: When the reactions are concurrent or parallel 

 

 

 

 

 

   [Fig. 2.2: Parallel reactions] 

 

[Fig. 2.1: Concurrent reactions] 

 

2.3.2 Internal Stability 

In internally stable structure is one that would maintain its shape if all the 

reaction supports were removed. A structure that is internally unstable may still 

be stable if it has sufficient external support reactions. 

 

  [Fig. 2.3]    [Fig. 2.4] 

2.4  External Determinacy:  

 The ability to calculate all of the external reaction component forces using only 

static equilibrium. A structure that satisfies this requirement is externally statically 

determinate. A structure for which the external reactions component forces cannot be 

calculated using only equilibrium is externally statically indeterminate. 

2.5 Internal Determinacy: 

   The ability to calculate all of the external reaction component 

forces and internal forces using only static equilibrium. A structure that satisfies this 

requirement is internally statically determinate. A structure for which the internal 

forces cannot be calculated using only equilibrium is internally statically 
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indeterminate. Typically, if one talks about 'determinacy', it is an internal determinacy 

that is meant. 

2.6 Redundant: 

  Indeterminate structures effectively have more unknowns than can be solved 

using the three equilibrium equations (or six equilibrium equations in 3D). The extra 

unknowns are called redundant. 

2.7   Degree of Indeterminacy: 

   The degree of indeterminacy is equal to the number of redundant. An 

indeterminate structure with 2 redundant may be said to be statically indeterminate to 

the second degree. 

-------------------------------------- 

Probable Questions: 

1. Write down types of end conditions and its reactions and compatibility 

condition.        (6 marks)  
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MODULE 1       CHAPTER 3 

         Session 4 

Learning objective 

Students will be able to  

• Understand statically determinate and indeterminate. 

• Formulate the statically indeterminacy. 

3.1  Statically Determinate: 

A statically determinate structure is one that is stable and all unknown reactive forces 

can be determined from the equations of equilibrium alone. 

 

 

 

 

[Fig. 3.1: Determinate beams] 

3.2  Statically Indeterminate: 

If a structure cannot be analyzed for external and internal reactions using static 

equilibrium conditions alone then such a structure is called indeterminate structure. 

 DS = DSe + DSi 

Where, 

DS = Degree of static-indeterminacy 

DSe = External static-indeterminacy 

DSi = Internal static-indeterminacy 

3.2.1 External static indeterminacy: 

It is related with the support system of the structure and it is equal to number of 

external reaction components in addition to number of static equilibrium equations. 

DSe = re - 3 For 2D 

DSe = re – 6 For 3D  Where, re = total external reactions 

M 
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3.2 Internal static indeterminacy: 

It refers to the geometric stability of the structure. If after knowing the external reactions it 

is not possible to determine all internal forces/internal reactions using static equilibrium 

equations alone then the structure is said to be internally indeterminate. 

For geometric stability sufficient number of members are required to preserve the shape of 

rigid body without excessive deformation. 

DSi = 3C - rr …… For 2D 

DSi = 6C - rr …… For 3D 

where, C = number of closed loops. 

and 

rr = released reaction 

• rr = ∑ (mj - 1) …… For 2D 

rr = 3∑ (mj - 1) ……. For 3D 

where mj = number of members connecting with J number of joints. 

and J = number of hybrid joint 

Hence static indeterminacy, 

Ds = m + re – 2j,  For 2D truss 

DSe = re - 3 & DSi = m – (2j – 3) 

DS = m + re – 3j,  For 3D truss 

Dse = re – 6 & Dsi = m – (3j - 6) 

DS = 3m + re – 3j - rr …... 2D Rigid frame 

Ds = 6m + re – 6j - rr …... 3D rigid frame 

DS = (re – 6) + (6C – rr) …... 3D rigid frame 
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MODULE 1       CHAPTER 3 

         Session 5 

Learning objectives: 

Students will be able to 

Solve various numerical on static indeterminacy 

3.3  Solved Examples: Find out static indeterminacy of the following 

figures. 

1.  

 

 

 

Ans: - 

    𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑟 = 4 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 3 

Degree of static indeterminacy = 4 – 3 = 1 

 

2.  

 

 Reaction at A = 3,   

Reaction at B = 2, 

 Reaction at C = 1 

 Total reaction = 6, 

 No. of equilibrium equation = 3, 

 Dse = r − 3 = 6 − 3 = 3  
Dsi = 3C for rigid jointed plane frames, Where 

C = no. of closed boxes 
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 Dsi = 3 × 2 = 6 

Ds = Dse + Dsi = 3 + 6 = 9 

3.    

 

 

Ds = m + re – 2j,  

Where m = no. of members = 24 

 And r = total reactions = 3 

  J= no. of joints = 13 

Ds = 24+3-(2 X 13) = 1 

4.  

 

Reactions at A = 3, Reactions at B = 2, Reaction at C = 1, Reactions at D = 2 

Total reactions (r) = 8 

Dse = r – equilibrium equations 

= r – 3 = 5 

 

Dsi = 3C = 3 × 2 = 6 
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At ‘k’ a moment hinge exists. 

 Force release at a joint moment hinge = no. of members connected to hinge – 1 = 2 – 1 = 1 

 

 Ds = Dse + Dsi – no. of force release 

= 5 + 6 – 1 = 10 

5.  

 

Dse = 6 – 3 = 3 

 

Dsi = 3C = 3 × 1 = 3 

 

Force Releases @ C = 3 – 1 = 2 

 

Force Releases @ D = 2 – 1 = 1 

 

Ds = Dse + Dsi – release = 3 + 3 – (2 + 1) = 3 

6. A beam fixed at the ends and subjected to lateral loads only 

 

Total number of reactions = 2 + 2 = 4 

 

Equilibrium equation with lateral load only = 2 

 

DSe = External indeterminacy = Re – equilibrium equation = 4 – 2 = 2 

 

DSi = Internal indeterminacy = 0 

 

 Total static indeterminacy 

DS = DSe + DSi = 2 + 0 = 2 
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MODULE 1       CHAPTER 3 

         Session 6 

Learning objective 

Students will be able to  

• Analyse the effect of force release. 

3.4 Effect of Force Release 

3.4.1 Moment hinge 

 

 

 

Moment release at internal hinge = no. of members at joint – 1 = (m’-1) 

…….for rigid jointed plane frame 

     = 3(m’-1) ……………… for space frame 

 

3.4.2 Horizontal Shear Release 

 

 

 

No. of force release = 1 

 

3.4.3 Vertical shear Release 

 

No. of force release = 1 

 

3.4.4 Link 

No. of force release = 2 (one release is along the force and other is moment)  
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MODULE 1       CHAPTER 3 

         Session 7 

Learning objective 

Students will be able to  

• Differentiate between static determinacy and indeterminacy 

3.5 Differentiation between Statically determinate and indeterminate 

 

STATICALLY DETERMINATE 

STRUCTURES 

STATICALLY INDETERMINATE 

STRUCTURES 

1. Equilibrium equations are 

sufficient 

1. Equilibrium equations + Compatibility 

equations are required 

2. No thermal stress. 

In determinate structures 

temperature change will not cause 

deformation.  

2.  Temperature stress will develop. 

Due to temperature change, resistance 

against deformation occurs, hence thermal 

stress develop. 

3. No effect of material & sectional 

properties on forces. 

3.  Forces are affected by material and 

sectional properties. 

4. No effect (forces) of sinking of 

support. 

4.  There is effects of sinking of supports 

(by δ) 

5. No stresses due to lack of fit.  

(If the length of member is either 

less or more than the actual length 

slightly, it is called lack of fit) 

5.  In case of statically indeterminate 

structure, if the length of a member is 

shorter, it shall be pulled to place it in the 

present position. Hence it will be 

subjected to axial tension. If member is 

longer, than shall be subjected to axial 

compression.  

6. The design moment or forces of 

statically determinate are more. 

6.  Design moment (or) forces are less. 

Hence indeterminate structures are 

economical. 
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MODULE 1       CHAPTER 4 

         Session 8 

Learning objective 

Students will be able to  

• What is kinematic indeterminacy and its condition. 

4.1  Kinematic Indeterminacy 

If the number of unknown displacement components are greater than the number of 

compatibility equations, for these structures additional equations based on equilibrium 

must be written in order to obtain sufficient number of equations for the determination 

of all the unknown displacement components. The number of these additional equations 

necessary is known as degree of kinematic indeterminacy or degree of freedom of the 

structure. 

Note: A fixed beam is kinematically determinate and a simply supported beam is 

kinematically indeterminate. 

4.2  Degree of freedom with various support condition: 

a. Each joint of plane pin jointed frame has 2 degrees of freedom. 

b. Each joint of space pin jointed frame has 3 degrees of freedom. 

c. Each joint of plane rigid jointed frame has 3 degrees of freedom. 

d. Each joint of space rigid jointed frame has 6 degrees of freedom. 

Hence kinematic indeterminacy is given by, 

➢ Dk = 3j - re ………. For 2D Rigid frame when all members are axially extensible. 

➢ Dk = 3j - re - m ………. For 2D Rigid frame if 'm' members are axially rigid / 

inextensible. 

➢ Dk = 3(j + j’) - re – m + rr …… For 2D Rigid frame when J' = Number of Hybrid 

joints is available. 

➢ Dk = 6(j + j’) - re – m + rr ….. For 3D Rigid frame 

➢ Dk = 2(j + j’) - re – m + rr ….. For 2D Pin jointed truss. 

➢ Dk = 3(j + j’) - re – m + rr …… For 3D Pin jointed truss. 

ie is degree of Indeterminacy 

ec is the number of equations of condition,  
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MODULE 1       CHAPTER 4 

         Session 9 

Learning objectives 

Students will be able to 

Solve various numerical on kinematic indeterminacy. 

4.2  Find out kinematic indeterminacy: 

1.  

 

 

 

 

 

Degrees of freedom of various supports (or) joints are shown in figure  

   

Dk = 0 + 3 × 7 + (1 + 2) 

= 24 (with axial deformation) 

= 24 – 11 = 13 

(Neglecting axial deformation) 

2.   
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Degree of freedom (Dk) 

= No. of unknown joint displacements 

At pinned support DOF = 1 (rotation) 

At rigid joint of plane frame = 3 

 Dk = 1 + 3 + 3 + 1 = 8 

(Considering axial deformations) 

Dk = 8 – no. of members = 8 – 3 = 5 

(Neglecting axial deformations) 

3.  The kinematic indeterminacy of single bay portal frame fixed at the base is  

At fixed support DOF = 0 

Dk = 0 + 3 + 3 + 0 = 6 

(Considering axial deformation) 

= 6 – 3 = 3 

(Neglecting axial deformation) 

4. Rigid frame with clamped ends at A and D shown in the figure 

 
 

Dk = 0 + 3 + 3 + 0 

= 6 (with axial deformation) 

= 6 – 3 = 3 

(Neglecting axial deformation) 
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MODULE 1       CHAPTER 5 

         Session 10 

Learning objectives 

Students will be able to 

• Understand Methods of structural analysis 

• What is Force method 

• What is displacement method 

5.1  Introduction to force and displacement methods of structural 

analysis: 

We have two distinct methods of analysis for statically indeterminate structure: 

a. Force method of analysis  

b. Displacement method of analysis 

In the force method of analysis,primary unknown are forces.In this method compatibility 

equations are written for displacement and rotations (which are calculated by force 

displacement equations). Solving these equations, redundant forces are calculated. Once the 

redundant forces are calculated, the remaining reactions are evaluated by equations of 

equilibrium. 

 In the displacement method of analysis,the primary unknowns are the 

displacements. In this method, first force -displacement relations are computed and 

subsequently equations are written satisfying the equilibrium conditions of the structure. 

After determining the unknown displacements, the other forces are calculated satisfying the 

compatibility conditions and force displacement relations  

5.2  Difference between force & displacement methods 

FORCE METHODS DISPLACEMENT METHODS 

1. Method of consistent deformation 

2. Theorem of least work 

3. Column analogy method 

4. Flexibility matrix method 

1. Slope deflection method 

2. Moment distribution method 

3. Kani’s method 

4. Stiffness matrix method 

Types of indeterminacy- static 

indeterminacy 

Types of indeterminacy- kinematic 

indeterminacy 

Governing equations-compatibility 

equations 

Governing equations-equilibrium equations 

Force displacement relations- flexibility 

matrix 

Force displacement relations- stiffness 

matrix 
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MODULE 1       CHAPTER 6 

         Session 11 

Learning objectives 

Students will be able to 

• Compute the unknown moments in the indeterminate beams subjected to - external 

load(s)  

• Find reactions for indeterminate beams. 

6.1 Derivation of Three moment Equation 

The three-moment equation gives us the relation between the moments between any three 

points in a beam and their relative vertical distances or deviations. This method is widely 

used in finding the reactions in a continuous beam. 

 

Consider three points on the beam loaded as shown. 

 

[Fig. 5.1]: internet source 

 

M3 
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[Fig. 5.2] 

From proportions between similar triangles: 

ℎ1 − 𝑡1
2

𝐿1
=

𝑡3
2

− ℎ3

𝐿2
 

 

 
ℎ1

𝐿1
−

𝑡1
2

𝐿1
=

𝑡3
2

𝐿2
−  

ℎ3

𝐿2
 

𝑡1
2

𝐿1
+

𝑡3
2

𝐿2
=

ℎ1

𝐿1
+  

ℎ3

𝐿2
 …….. eqn(1) 

Values of  𝑡1

2

 & 𝑡3

2

 

𝑡1
2

=  
1

𝐸1𝐼1
 (𝐴𝑟𝑒𝑎1−2) . 𝑋1

̅̅ ̅  

 

 

 

 

 

 

 

 

Substitute t1/2 and t3/2 to equation (1) 
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Multiply both sides by 6 

 

Distribute 1/EI 

 

For the application of three-moment equation to continuous beam, points 1, 2, and 

3 are usually unsettling supports, thus h1 and h3 are zero. With E and I constants, 

the equation will reduce to 
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MODULE 1       CHAPTER 6 

         Session 12 

Learning objectives 

Students will be able to 

Solve numerical in continuous beam on three moment theorems 

6.2  Continuous beam by three moment equation 

1. Determine the moment over the support R2 of the beam shown in Fig.  
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------------------------------------------------- 

 

Assignment 

A continuous beam ABCD is carrying a uniformly distributed load of 1 kN/m 

over span ABC in addition to concentrated loads as shown in Fig. Calculate 

support reactions. Also, draw bending moment and shear force diagram. Assume 

EI to be constant for all members. 
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MODULE 1       CHAPTER 7 

         Session 13 

Learning objectives 

Students will be able to 

• Analyse moment area method. 

7.2  Moment Area theorem: 

The moment area theorems provide a way to find slopes and deflections. 

• The first moment area theorem is that the change in the slope of a beam between 

two points is equal to the area under the curvature diagram between those two 

points. 

 

[Fig.7.1: For slope analysis] 

 

𝜃𝐶𝐵 = ∫
𝑀(𝑥)

𝐸(𝑥)𝐼(𝑥)
𝑑𝑥

𝐶

𝐵

 

 

 

• The second moment area theorem is that the vertical distance between a reference 

tangent line that is tangent to the slope at one point on the beam and the deflected 

shape of the beam at another point, is equal to the moment of the area under the 

curvature diagram between the two points with the moments of the areas calculated 

relative to the point on the deflected shape. 

𝛥𝐵𝐶 = ∫
𝑀(𝜘)

𝐸(𝑥)𝐼(𝑥)
𝑥̅ 𝑑𝑥

𝐶

𝐵
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[Fig.7.2: Deflection Analysis] 

 

7.2 Common equations for calculating the area and centroid of 

different shapes may be seen in 
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Probable question 

 

 

 

 

 

 

Which dimension in the figure shown represents ΔB/A? 

What is the value of ΔB/A? 
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MODULE 1       CHAPTER 8 

         Session 14 

Learning objectives 

Students will be able to 

• What is conjugate beam method. 

• Conversion of real supports to conjugate beam supports 

• Draw conjugate beam 

8.1  Conjugate beam: 

The conjugate beam method is the method used to determine the slope and 

deflection of the beam in which the imaginary conjugate beam is constructed from 

the real beam and the shear forces and bending moments of the conjugate beam are 

equal to the slope and deflection of the real beam. 

Real beam: the beam with the actual loads and supports is known as a real beam 

Conjugate Beam: It is an imaginary beam that has the same length as a real beam, 

but in this case, the loading is equal to the ratio of bending moment (M) of the real 

beam to the flexural rigidity (EI). 

 

8.2  Conversion of real beam support to conjugate beam support 

Sr. 

No. 
Real Beam Conjugate beam 

1 Fixed support Free end 

2 Free end Fixed support 

3 Internal hinge/ Internal roller 
Interior roller support/ Interior 

pin support 

4 
Interior roller support/ Interior 

pin support 
Internal hinge/ Internal roller 

5 Roller support/ Pin support Roller support/ Pin support 

https://en.wikipedia.org/wiki/Deflection_(engineering)
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8.3  Relation of Real beam to Conjugate beam 

➢ Loading for conjugate beam: The ratio of bending moment of the real beam to the flexural 

rigidity is considered as loading in the case of a conjugate beam. 

e.g.: If the bending moment at a certain point of the real beam is ‘M’ then the load on the 

conjugate beam on that point is taken as (M / EI). 

➢ Shear force at a certain point in the conjugate beam (V conjugate) is equal to the slope (𝚹 

real) at that point in a real beam. 

➢ Bending moment at a certain point in conjugate beam (M conjugate) is equal to the 

deflection (X real) at that point in a real beam. 

8.4  Steps used to draw the conjugate beam 

Step 1: Draw the bending moment diagram for the real beam. 

Step 2: Divide the magnitudes of bending moments by flexural rigidity and draw the  

M/EI diagram. 

Step 3: Draw the conjugate beam having the same length as a real beam. 

Step 4: Plot the loading same as the M/EI diagram in step-2. 

Step 5: Apply the supports to the conjugate diagram as describes before. 

8.5 Steps used to solve the conjugate beam from the real beam 

Step 1: Find the reactions of the conjugate beam using equilibrium conditions. 

Step 2: Construct the shear force diagram for the conjugate beam. 

Step 3: Construct the bending moment diagram for the conjugate beam. 

Step 4: The values of the shear force in the conjugate beam diagram give the slope values in 

the real beam. 

Step 5: The values of the bending moment in the conjugate beam diagram give the 

deflection values in the real beam. 

 

 

  

https://en.wikipedia.org/wiki/Bending_moment
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MODULE 1       CHAPTER 8 

         Session 15 

Learning objectives 

Students will be able to 

• Solve conjugate beam method problems 

• Draw BMD and conjugate beams 

8.6  Solve by conjugate beam method: 

For the following beam calculate the slope and deflections at all points by the 

conjugate beam method. The beam has flexural rigidity, EI = 1.5 x 10^6 N.m^2 

 

• Wood E= 12.9 Gpa = 12.9 x 10^9 N/m2  

• I= 1.16 x 10^-4 m4 

• EI = 1.5 x 10^6 

By applying equation condition, 

ΣFy = 0 [Take upward positive] 

RA−500=0 RA-500=0 

RA=500N RA=500N [Upward] 

∑MA=0 

∑MA=0 [Take clockwise positive] 

[500 x 2]- MA = 0 

MA = 1000 N.m 

Draw bending moment diagram while calculating bending moments from A to C 

& consider clockwise moment as positive. 

BMAJL= 0 Nm 
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BMAJR= - MA = -1000Nm 

BMB= −MA+(RA×2) BMB= -MA+(RA×2) 

BMB= −1000+(500×2) BMB= -1000+(500×2) 

BMB = 0 N.m. 

BMC = (RA×4) − MA−(500×2) BMC = (RA×4)-MA-(500×2) 

BMC = (500×4) −1000−(500×2) 

BMC= (500×4)-1000-(500×2) 

BMC = 0 N.m. 
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Conjugate beam –  

 

Draw the beam A’B’C’ of the same length as real beam. 

Apply the conjugate supports as discussed above. 

∴ The fixed support at A is replaced by Open end and the Open end at C is replaced by 

Fixed support. 

Apply the load as the M/EI diagram. 

Find support reactions of conjugate beam 

Now apply equilibrium conditions to fixed the reactions 

1] ΣFy = 0 [Consider upward force as positive] 

(100/EI) – Cy = 0 

Cy=1000/EI 

2] ∑MC=0 [Consider clockwise moments positive] 

[1000/EI×3.33] – MC=0 [1000/EI×3.33] – MC=0 

MC=3330/EI 

Calculate the shear forces at all points of conjugate beam calculate from end A to 

end C & Consider upward force as positive. 

SFA=0 

SFB=1000/EI 

SFB=1000/EI 

SFCJL=1000/EI 
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SFCJL=1000/EI 

SFCJR=(1000/EI)−(1000/EI)=0 

 

Calculate bending moment at all points of conjugate beam 

BMA=0 BMA=0 

BMB=[1000/EI×1.33] BMB=[1000/EI×1.33] 

BMB=1330/EI BMB=1330/EI 

BMCJL=[1000/EI×3.33] =3330/EI  

BMCJL=[1000/EI×3.33] =3330/EI 

BMCJR=[1000/EI×3.33] −MC 

BMCJR=[1000/EI×3.33]-MC 

BMCJR=0 

Draw the SFD and BMD for the conjugate beam 

 

 

Slope and deflections of different points. 

At point A :- Slope θA=0 Deflection XA=0 

At point B :-  Slope, θB=1000/EI  Deflection XB=1330/EI 

At point C :-  Slope, θC=1000/EI  Deflection XC=3330/EI 
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MODULE 1       CHAPTER 9 

         Session 16 

Learning objectives 

Students will be able to 

Apply and analyse by consistent deformation method. 

9. Consistent deformation method 

In this method of analysis, excess restraints on the structure are removed to get basic 

determinate structure. Such structure is also known as released structure. The 

released structure is analysed for given loading to get displacements in the direction 

of released restraint. Then redundant forces which are unknown are applied in the 

direction of restraints removed and the displacements in each direction of restraint 

removed, are obtained separately for each redundant force. These displacements are 

in terms of redundant forces. Then considering all these displacements of released 

structure total displacement due to loading and due to redundant forces in each 

restraint removed is found. Considering the displacement compatibility of original 

structure equations are assembled. These conditions result into as many equations as 

there are number of redundant forces. Solution of these simultaneous equations 

gives the values of redundant forces. Knowing these values moments and forces at 

any point in the structure can be found. The method is illustrated below by solving 

few typical cases. 

 

Example: A propped cantilever of span L is fixed at A and is on roller at B. 

Analyse it when it is subjected to a concentrated load P at midspan. Assume 

uniform cross-section throughout. 

Answer: 

Total number of reactions = 3 + 1 = 4 Number of equilibrium equations available = 

3. \ Degree of static indeterminacy = 4 – 3 = 1. By releasing support B restraint to 

vertical deflection is removed and we get a cantilever as basic determinate structure. 

This released structure is analysed for the given load and the redundant force RB to 

get vertical displacements at B. 
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MODULE 2       CHAPTER 10 

    STRAIN ENERGY  SESSION 17 

Learning objective: 

Students will be able to understand 

• What is strain energy and its significances. 

• General formulations for strain energy. 

 

10.1 INTRODUCTION  

Energy methods are extensively used for the determination of force or any internal stress 

resultant (for example, bending moment etc.) and displacements (linear and angular, both) 

of structures. It is particularly useful in the analysis of indeterminate structures. The energy 

theorems are applicable in elementary analysis as well as in advanced analysis and also in 

finite element methods. They are very convenient and general in their applications. 

Strain energy stored by a member (U)

=  Amount of the work done by the external forces to produce the deformation 

 

[Fig. 10.1 Stress strain relation] 

Strain Energy is the energy stored up to proportionality limit (the blue shaded area in the 

Fig.10.1) 

Area under stress strain curve (per unit volume) is the Strain Energy (U). 

Area above the stress strain curve is called Complementary Energy (U*). 

For a linear elastic system, U= U* 
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Significance: 

• This method is suitable for calculating slopes and deflections. 

• Analysis of truss and displacements of truss joints are worked out using energy 

principles. 

10.2 STRAIN ENERGY 

Loads 

 

 

Gradually Applied loads Suddenly applied loads  Impact loads 

10.2.1 For Gradually applied load 

𝑈 =
1

2
 × 𝑃 × 𝛿        P 

𝑈 =
1

2
× 𝜎 × 𝜖 × 𝑣𝑜𝑙𝑢𝑚𝑒         

           𝜹 

10.2.2 Strain energy due to axial force     [Fig. 10.2] 

𝑈 =
1

2
× 𝑃 ×

𝑃𝐿

𝐴𝐸
=

𝑃2𝐿

2𝐴𝐸
 

OR 

strain energy stored by an elemental member ds be dU 

𝑑𝑈 =  
1

2
× 𝑃 ×

𝑃𝑑𝑠

𝐴𝐸
=

𝑃2𝑑𝑠

2𝐴𝐸
 

𝑈 = ∫
𝑃2𝑑𝑠

2𝐴𝐸
 

10.2.3 Strain Energy due to shear force 

 Strain energy stored by an elemental member ds is dU subject to the shear force Q 

𝑑𝑈 =
𝑄2𝑑𝑠

2𝐴𝐺
 

𝑈 = ∫
𝑄2𝑑𝑠

2𝐴𝐺
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10.2.4 Strain Energy due to bending moment 

Strain energy stored by an elemental member ds be dU, subject to the bending moment M. 

𝑑𝑈 =  
𝑀2𝑑𝑠

2𝐸𝐼
 

𝑈 = ∫
𝑀2𝑑𝑠

2𝐸𝐼
 

General Equation for strain Energy 

𝑈 = ∫
𝑃2𝑑𝑠

2𝐴𝐸
+ ∫

𝑄2𝑑𝑠

2𝐴𝐺
+ ∫

𝑀2𝑑𝑠

2𝐸𝐼
 

Proof Resilience 

 The maximum strain energy stored at elastic limit is called Proof Resilience. 

Modulus of Resilience 

 Strain Energy per unit volume. 
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MODULE 2       CHAPTER 10 

    STRAIN ENERGY  SESSION 18 

Learning objectives 

Students will be able to understand 

• What is real and what is virtual work? 

• What are its principles? 

 

10.3 VIRTUAL WORK 

Work is done when the point of application of a force is moved and is given by the product 

of force x displacement. The word virtual indicates imaginary, so the virtual work is the 

hypothetical work consisting of real forces with virtual displacements or virtual forces with 

real displacements. The principle of virtual work was postulated by Aristotle in the 4th 

century BC. In fa&, all the energy methods can be developed from the principle of virtual 

work. The principle of virtual work is based on the physical principle of conservation of 

energy and is applicable to both linear and non-linear elastic systems of determinate and 

indeterminate structures. 

10.3.1 Principle of Virtual Displacements (Rigid Bodies) 

The total work done by a rigid body held in equilibrium by a system of forces and reactions 

during a small virtual displacement is zero. 

This principle is useful in determining forces and influence lines. Unit displacement method 

is developed based on this concept. 

10.3.2 Principle of Virtual Forces 

The total work done by a rigid body subjected to a deformation compatible with the support 

conditions, held in equilibrium, by virtual forces and reactions on the body is equal to zero.  

This principle is useful in computing displacements in a structure. Unit load (for trusses) 

unit moment (for beams) and unit torsion (for shafts) have been developed based on this 

concept for determination of deformation of various structures. 
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[Fig. 10.3] 

[Fig. 10.4] 

In general, then, the principle of work and energy states  P = u i.e., Work of 

external loads = work of internal loads 
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MODULE 2       CHAPTER 11 

SESSION 19 

Learning objectives 

Students will be able to understand 

• Castigliano’s theorem I and theorem II. 

 

11.1 CASTIGLIANO’S 1ST THEOREM 

The partial derivative of the strain energy of a linearly elastic structure (represented in 

terms of displacements) with respect to any displacement ∆𝑗, at coordinate j is equal to the 

force Pj, at coordinate j. 

Mathematically, 

𝜕𝑈

𝜕∆𝑗

= 𝑃𝑗 

This theorem is also applicable to the system of moments and the resulting angular 

deformations. 

This principle is widely used in analysis of structures. 

11.2 CASTIGLIANO’S 2ND THEOREM 

The partial derivative of the strain energy of a linearly elastic structure (represented in 

terms of forces) with respect to any force Pj at coordinate j is equal to the displacement ∆j, 

at coordinate j. 

𝜕𝑈

𝜕𝑃𝑗

= ∆𝑗 

This theorem is extensively used for determination of displacement in a structure of both 

the determinate and indeterminate types.  

In fact, it is a powerful tool for the analysis of the structure. 

11.3 MINIMUM ENERGY THEOREM 

In any and every case of statically indeterminate structure, where an indefinite number of 

different values of the redundant forces and displacements satisfy the condition of statical 
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equilibrium, their actual values are those that render the total strain energy stored to a 

minimum. 

Therefore, 
𝜕𝑈

𝜕𝑋
= 0 and 

𝜕2𝑈

𝜕𝑋2  is positive 

where X = redundant force. 

The strain energy stored by a structure subjected to bending and/or axial loading is given 

by,  

𝑈 = ∫
𝑀2𝑑𝑠

2𝐸𝐼
+ ∫

𝑃2𝑑𝑠

2𝐴𝐸
 

Example: Find the reaction at the prop of a propped cantilever beam loaded as shown in 

fig 

 

 

Solution 

Let X be the reaction at the prop (considered as the redundant reaction) i.e RB 

B.M. at any section distant Z from B, M =𝑋𝑧 −
𝑤𝑧2

2
 

.: Strain energy stored by the beam = U = ∫
𝑀2𝑑𝑧

2𝐸𝐼
 = ∫ (𝑋𝑧 −

𝑤𝑧2

2
)

2
𝑑𝑧

2𝐸𝐼

𝑙

0
 

By the Minimum energy Principle 
𝜕𝑈

𝜕𝑋
= 0 

We get ∫ 2 (𝑋𝑧 −
𝑤𝑧2

2
) 𝑍

𝑑𝑧

2𝐸𝐼
= 0

𝑙

0
 

𝑋 =
3

8
𝑤𝑙 

i.e. RB= X, we can find out all the reactions at the support A. 
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MODULE 2       CHAPTER 12 

SESSION 20 

Learning objectives 

Students will be able to understand 

• Unit load method. 

 

12.1 UNIT LOAD METHOD 

 It is the extension of Castigliano’s Theorem to calculate displacements in various 

structures. 

In case of truss,  

𝛿 =
∑ 𝑃𝑘𝐿

𝐴𝐸
 

Where P= Force in a member due to external load system 

 k = Force in a member by applying unit load in the direction at the point where 

deflection is desired after removing the given external loads. 

 L = length of the concerned member. 

 AE = Axial rigidity of the member. 

Sign Convention: Tension= -ve 

   Compression= +ve 

Example: Both AC & BC are of length l and separated by 45-degree angle. 

 A  B  

   AE 2AE 

  C  1 

  W 

 

 1 

  

 

Applying unit load in 

 P k 

(vertical) 

l AE 

AC −𝑊

√2
 

−1

√2
 √2𝑙 AE 

BC −𝑊

√2
 

−1

√2
 √2𝑙 2AE 
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vertical direction,  

𝛿𝑉 =
∑ 𝑃𝑘𝐿

𝐴𝐸
 

Applying horizontal unit load 

FAC cos45o
= FCB cos 45o + 1 

FAC + FCB = 0 

FCB = 
−1

√2
 (Compression) 

Applying unit load in horizontal direction, 

𝛿𝐻 =
∑ 𝑃𝑘′𝐿

𝐴𝐸
 

 𝑘′ 

AC −1

√2
 

BC −1

√2
 

 

Members P K k’ L AE 

AC −𝑊

√2
 

−1

√2
 

−1

√2
 √2𝑙 AE 

BC −𝑊

√2
 

−1

√2
 

−1

√2
 √2𝑙 2AE 

 

𝛿𝑉 =
∑ 𝑃𝑘𝐿

𝐴𝐸
=

−𝑤

√2
×

−1

√2
× √2𝑙

𝐴𝐸
+

−𝑤

√2
×

−1

√2
× √2𝑙

2𝐴𝐸
 

=
3𝑤𝑙

2√2𝐴𝐸
 

𝛿𝐻 =
∑ 𝑃𝑘′𝐿

𝐴𝐸
=

−𝑤

√2
×

−1

√2
× √2𝑙

𝐴𝐸
+

−𝑤

√2
×

1

√2
× √2𝑙

2𝐴𝐸
 

=
𝑤𝑙

2√2𝐴𝐸
 

 

Note: 𝜹 =
∑ 𝑃𝑘𝐿

𝐴𝐸
= ∑ 𝑘𝛿′ ;  𝛿′ represents the actual deflection in a member may be due to 

external load system or temperature change or lack of fit. 
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MODULE 2       CHAPTER 13 

SESSION 21 

Learning objectives 

Students will be able to understand 

• Maxwell’s (Reciprocal) Theorem. 

13.1 MAXWELL’S THEOREM 

“In any Elastic structure, the displacements at point ‘D’ due to an unit load at ‘C’, is equal 

to deflection at ‘C’ due to unit load at D.” 

 

[Fig. 13.1 

δXY is the deflection at point X due to unit load at point Y.  δDC is shown.   

The unit load is transferred to point D. Maxwell’s theorem equates δCD to δDC. 

i.e., δCD = δDC 

Maxwell’s law is valid both in prismatic and non-prismatic structure. 

Maxwell’s law is independent of cross-sections i.e., sectional properties. 

In the following fig [13.2] 

As applied to beam deflections and rotations, Maxwell’s theorem of reciprocal 

deflections has the following three versions: 

 

(1) The deflection at A due to unit force at B is equal to the deflection at B 

due to unit force at A as shown in Figure 17.1 a 



45 

 

 AB =  BA 

(2) The slope at A due to unit couple at B is equal to the slope at B due to unit 

couple at A as shown in Figure 17.1 b 

AB = BA 

(3) The slope at A due to unit load at B is equal to the deflection at B due to 

unit couple at A as shown in Figure 17.1 c 

AB ' =  BA' 

 

[Fig. 13.2] 
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MODULE 2       CHAPTER 13 

SESSION 22 

Learning objectives 

Students will be able to understand 

• Maxwell Betti’s Theorem. 

13.2 MAXWELL BETTI’S THEOREM 

If an elastic system is in equilibrium under one set of forces with their corresponding 

displacements and if the same system is also in equilibrium under second set   of 

forces acting through the same points with their corresponding displacements, 

then the product of the first group of forces and the corresponding displacements 

caused by second group is equal to the product of the second group of forces and the 

corresponding displacements caused by the first group 

 

𝑃𝐴∆𝐴′ + 𝑃𝐵∆𝐵′= 𝑃′
𝐴∆𝐴 + 𝑃′

𝐵∆𝐵 

 

Where P and  constitute first group of forces and their corresponding displacements 

and P ' and ' constitute second group of forces and displacements. 

That is the virtual work done by the first set of forces acting through the second set 

of displacements is equal to the virtual work done by the second set of forces acting 

through the first set of displacements. 

In Betti’s theorem, the symbols P and  can also denote couples and rotations 

respectively as well as forces and linear deflections i.e 

 

𝑀𝐴𝜃𝐴′ + 𝑀𝐵𝜃𝐵′ = 𝑀′
𝐴𝜃𝐴 + 𝑀′

𝐵𝜃𝐵 

 

Thus, according to Betti’s law, 

∑ 𝑃∆′ + ∑ 𝑀𝜃′ = ∑ 𝑃′∆ + ∑ 𝑀′𝜃 

 

 



47 

 

MODULE 2       CHAPTER 14 

SESSION 23 

Learning objectives 

Students will be able to understand 

• Application of Virtual work method (Trusses) 

14.1 METHOD OF VIRTUAL WORK: TRUSSES 

We can use the method of virtual work to determine the displacement of a truss joint when 

the truss is subjected to an external loading, temperature change, or fabrication errors. 

Each of these situations will now be discussed. 

[Fig. 14.1] 

External Loading. For the purpose of explanation let us consider the vertical 
displacement  of joint B of the truss in Fig 14.1(a). Here a typical element of the 
truss would be one of its members having a length L, Fig.14.1(b) 

If the applied loadings P1 and P2 and cause a linear elastic material response, then this 

element deforms an amount 

∆=
𝑁𝐿

𝐴𝐸
 

 = udL , the virtual-work expression for the truss is therefore 
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∆=
∑ 𝑛𝑁𝐿

𝐴𝐸
 

Where, 
 

1= external virtual unit load acting on the truss joint in the stated direction of  

n= internal virtual normal force in a truss member caused by the external virtual unit 

load. 

 = external joint displacement caused by the real loads on the truss. 

N= internal normal force in a truss member caused by the 

real loads. 

 L= length of a member. 

A= cross sectional area of a member. 

E = modulus of elasticity of a member. 

Here the external virtual unit load creates internal virtual forces n in each of the truss 

members. The real loads then cause the truss joint to be displaced  in the same 

direction as the virtual unit load, and each member is displaced nL/AE in the same 

direction as its respective n force. Consequently, the external virtual work  equals 

the internal virtual work or the internal (virtual) strain energy stored in all the truss 

members, that is,  nL / AE 

Temperature. In some cases, truss members may change their length due to 

temperature. If    is the coefficient of thermal expansion for a member and T is 

the change in its temperature, the change in length of a member is dL = TL Hence, 

we can determine the displacement of a selected truss joint due to this temperature 

change is written as 

1.. =  nTL 

where 

1= external virtual unit load acting on the truss joint in the stated direction of  

 

n= internal virtual normal force in a truss member caused by the external virtual unit 

load. 
 

 = external joint displacement caused by the temperature change. 
 

 = coefficient of thermal expansion of member. 
 

T = change in temperature of member. 
 

L= length of member. 
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MODULE 3       CHAPTER 15 

SESSION 24 

Learning objectives 

Students will be able to understand 

• Introduction to trusses. 

• Assumptions & rules in truss analysis. 

15.1 INTRODUCTION 

A truss is a structure composed of straight, slender members connected at their ends by 

frictionless pins or hinges. A truss can be categorized as simple, compound, or complex. A 

simple truss is one constructed by first arranging three slender members to form a base 

triangular cell. 

The conditions of determinacy, indeterminacy, and instability of trusses can be stated as 

follows: 

m+r<2j structure is statically unstable  

m+r=2j structure is determinate  

m+r>2j structure is indeterminate 

where, 

m= number of members. 

r= number of support reactions. 

j= number of joints. 

15.2 BASIC ASSUMPTIONS 

• Members of the truss are primarily subjected to axial force only. Shear force and 

Bending moment are neglected. 

• The self weight of the members are neglected. 

• Loads will be act at the joints only. 

• Joints are frictionless hinges. (No rotational resistance) 

• All the members are lying in one plane (called middle plane of truss) 
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CG of the joints and CG of the members coincide in order to avoid bending. 

SIGN CONVENTION 

Towards the joint- axial compression    

Away from the joint- axial tension   

15.3 BASIC RULES 

• A single force cannot exist in nature; if at all it exists, it must be zero. 

• If two forces act at a joint & if they’re not be in the same line, then each force must 

be zero. 

• If three forces act at a joint & if two of them are in same line then 3rd force must be 

zero. 

• Horizontal force can’t have vertical component and vice versa. 

 

SOLVE THE FOLLOWING 

Qn. -   

 

 

 

Which members will be zero members in the above fig.? 
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MODULE 3       CHAPTER 15 

SESSION 25 

Learning objectives 

Students will be able to understand 

• Methods of truss analysis. 

• Methods of joints. 

15.4 METHODS OF TRUSS ANALYSIS 

The analysis of truss consists of two steps: 

i. Computation of reactions. 

ii. Computation of axial forces. 

Methods: 

1. Analytical 

a. Methods of joints. 

b. Methods of sections. 

2. Graphical 

a. Maxwell’s method. 

b. Culmann’s method. 

15.4.1 METHODS OF JOINTS: 

This method is based on the principle that if a structural system constitutes a body in 

equilibrium, then any joint in that system is also in equilibrium and, thus, can be 

isolated from the entire system and analyzed using the conditions of equilibrium. The 

method of joint involves successively isolating each joint in a truss system and 

determining the axial forces in the members meeting at the joint by applying the 

equations of equilibrium. The detailed procedure for analysis by this method is stated 

below. 

Procedure for Analysis 

•Verify the stability and determinacy of the structure. If the truss is stable and 

determinate, then proceed to the next step. 
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•Determine the support reactions in the truss. 

•Identify the zero-force members in the system. This will immeasurably reduce the 

computational efforts involved in the analysis. 

•Select a joint to analyze. At no instance should there be more than two unknown 

member forces in the analyzed joint. 

•Draw the isolated free-body diagram of the selected joint, and indicate the axial forces 

in all members meeting at the joint as tensile (i.e. as pulling away from the joint). If this 

initial assumption is wrong, the determined member axial force will be negative in the 

analysis, meaning that the member is in compression and not in tension. 

•Apply the two equations ΣFX=0ΣFX=0 and ΣFY=0ΣFY=0 to determine the member 

axial forces. 

•Continue the analysis by proceeding to the next joint with two or fewer unknown 

member forces. 

Example 1 

Using the method of joint, determine the axial force in each member of the truss shown 

in Figure a. 

 

Solution 

Support reactions. By applying the equations of static equilibrium to the free-body 

diagram shown in Figure b, the support reactions can be determined as follows: 

+↶ ∑MA=0 20(4)−12(3)+(8)Cy=0  Cy=−5.5kN  
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+↑ ∑Fy=0   Ay−5.5+20=0 Ay=−14.5kN 

+→ ∑Fx=0 −Ax+12=0 Ax=12kN Cy=5.5kN  

↓ Ay=14.5kN  

↓ Ax=12kN 

←+↶ ∑MA=0 20(4)−12(3)+(8)Cy=0  Cy=−5.5kN  

↓+↑ ∑Fy=0  Ay−5.5+20=0  Ay=−14.5kN 

↓+→ ∑Fx=0  −Ax+12=0 Ax=12kN 

Analysis of joints. The analysis begins with selecting a joint that has two or fewer 

unknown member forces. The free-body diagram of the truss will show that 

joints A and B satisfy this requirement. To determine the axial forces in members 

meeting at joint AA, first isolate the joint from the truss and indicate the axial forces of 

members as FAB and FAD, as shown in Figure c. The two unknown forces are initially 

assumed to be tensile (i.e., pulling away from the joint). If this initial assumption is 

incorrect, the computed values of the axial forces will be negative, signifying 

compression. 

Analysis of joint AA. 

+↑ ∑Fy=0  FABsin36.87∘−14.5=0  FAB=24.17  

+→∑Fx=0 −12+FAD+FABcos36.87∘=0 FAD=12−24.17cos36.87∘=−7.34kN  

+↑∑Fy=0 FABsin36.87∘−14.5=0 FAB=24.17 

+→∑Fx=0  −12+FAD+FABcos36.87∘=0 

 FAD=12−24.17cos36.87∘=−7.34kN 

 

 

After completing the analysis of joint AA, joint BB or DD can be analyzed, as there are 

only two unknown forces. 
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Analysis of joint DD. 

+↑ ∑Fy=0 FDB=0  

+→ ∑Fx=0 −FDA+FDC=0 FDC=FDA=−7.34kN  

+↑ ∑Fy=0  FDB=0 

+→∑Fx=0  −FDA+FDC=0 FDC=FDA=−7.34kN 

 

Analysis of joint BB. 

+→ ∑Fx=0  −FBAsin53.13+FBCsin53.13+15=0

 FBCsin53.13=−15+24.17sin53.13 FBC=5.42kN  

+→ ∑Fx=0  −FBAsin53.13+FBCsin53.13+15=0 

 FBCsin53.13=−15+24.17sin53.13 FBC=5.42kN 
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MODULE 3       CHAPTER 15 

SESSION 26 

Learning objectives 

Students will be able to understand 

• Methods of sections in truss analysis. 

15.4.2 METHODS OF SECTIONS 

 Analysis of Trusses by Method of Section- 

Sometimes, determining the axial force in specific members of a truss system by the 

method of joint can be very involving and cumbersome, especially when the system 

consists of several members. In such instances, using the method of section can be 

timesaving and, thus, preferable. This method involves passing an imaginary section 

through the truss so that it divides the system into two parts and cuts through members 

whose axial forces are desired. Member axial forces are then determined using the 

conditions of equilibrium. The detailed procedure for analysis by this method is presented 

below. 

Procedure for Analysis of Trusses by Method of Section 

•Check the stability and determinacy of the structure. If the truss is stable and determinate, 

then proceed to the next step. 

•Determine the support reactions in the truss. 

•Make an imaginary cut through the structure so that it includes the members whose axial 

forces are desired. The imaginary cut divides the truss into two parts. 

•Apply forces to each part of the truss to keep it in equilibrium. 

•Select either part of the truss for the determination of member forces. 

•Apply the conditions of equilibrium to determine the member axial forces. 
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Example 2 

Using the method of section, determine the axial forces in members CD, CG, and HG of the 

truss shown in Figure a. 

 

Solution 

Support reactions.  

By applying the equations of static equilibrium to the free-body diagram in Figure b, the 

support reactions can be determined as follows: 

Ay=Fy=160/2=80Kn 

+→ ΣFx=0 Ax=0 Ay=Fy=160/2=80kN 

+→ ΣFx=0 Ax=0 

Analysis by method of section. First, an imaginary section is passed through the truss so 

that it cuts through members CD, CG, and HG and divides the truss into two parts, as 

shown in Figure c and Figure d. Member forces are all indicated as tensile forces (i.e., 

pulling away from the joint). If this initial assumption is wrong, the calculated member 
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forces will be negative, showing that they are in compression. Either of the two parts can be 

used for the analysis. The left-hand part will be used for determining the member forces in 

this example. By applying the equation of equilibrium to the left-hand segment of the truss, 

the axial forces in members can be determined as follows: 

Axial force in member CD.  

To determine the axial force in member CD, find a moment about a joint in the truss where 

only CD will have a moment about that joint and all other cut members will have no 

moment. A close examination will show that the joint that meets this requirement is joint G. 

Thus, taking the moment about G suggests the following: 

+↶ ∑MG=0 −80(6)+80(3)−FCD(3)=0 FCD=−80kN(C) 

Axial force in member HG. 

+↶ ∑MC=0 −80(3)+FHG(3)=0 FHG=80kN(T) 

Axial force in member CG. The axial force in member CG is determined by considering the 

vertical equilibrium of the left-hand part. Thus, 

+↑ ∑Fy=0  80−80−FCGcos45∘=0  FCG=0 
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MODULE 3       CHAPTER 16 

SESSION 27 

Learning objectives 

Students will be able to understand 

• What is space truss.? 

16.1 ROOF TRUSS 

A space truss consists of members joined together at their ends to form a stable three-

dimensional structure. It was shown that the simplest form of a stable two-dimensional 

truss consists of the me 

 

mbers arranged in the form of a triangle. We then built up the simple plane truss from this 

basic triangular element by adding two members at a time to form further elements. In a 

similar manner, the simplest element of a stable space truss is a tetrahedron, formed by 

connecting six members together with four joints as shown in following Fig. Any additional 

members added to this basic element would be redundant in supporting the force P. A 

simple space truss can be built from this basic tetrahedral element by adding three 

additional members and another joint forming multiconnected tetrahedrons. 

 

The external stability of the space truss requires that the support reactions keep the truss in 

force and moment equilibrium about any and all axes. This can sometimes be checked by 

inspection, although if the truss is unstable a solution of the equilibrium equations will give 

inconsistent results. Internal stability can sometimes be checked by careful inspection of 
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the member arrangement. Provided each joint is held fixed by its supports or connecting 

members, so that it cannot move with respect to the other joints, the truss can be classified 

as internally stable. Also, if we do a force analysis of the truss and obtain inconsistent 

results, then the truss configuration will be unstable or have a “critical form.” 

Example 1. 

Determine the force in each member of the space truss shown in Fig. a. The truss is 

supported by a ball-and-socket joint at A, a slotted roller joint at B, and a cable at C. 

 

SOLUTION 

The truss is statically determinate since or Fig. b. 

Support Reactions. We can obtain the support reactions from the free-body diagram of the 

entire truss, Fig. b, as follows: 

The truss is statically determinate since b+r=3j or 9+6 = 3(5) 
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MODULE 3       CHAPTER 16 

SESSION 28 

Learning objectives 

Students will be able to understand 

• Problems of Trusses by methods of joints. 

PROBLEMS 

Qn. 1: Determine the force in each member of the roof truss shown in the Fig.. The 

dimensions and loadings are shown in Fig. a. State whether the members are in tension or 

compression. 

 

 

 

 

SOLUTION 

Only the forces in half the members have to be determined, 

since the truss is symmetric with respect to both loading and 

geometry. 

Joint A, Fig. b. We can start the analysis at joint A. 

The free-body diagram is shown in Fig. b. 

+↑ ∑ 𝐹𝑌 = 0 ; 4 − 𝐹𝐴𝐺𝑆𝑖𝑛 30𝑜 = 0  𝐹𝐴𝐺 = 80𝑘𝑁 (𝐶) 

+→  ∑ 𝐹𝑥 = 0 ; 𝐹𝐴𝐵  −  8 𝐶𝑜𝑠 30° =  0  𝐹𝐴𝐵 =  6.928 𝑘𝑁 (𝑇) 

Joint G, Fig. c. In this case note how the orientation of the x, y 

axes avoid simultaneous solution of equations. 
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+↖  ∑ 𝐹𝑌 = 0 ;  𝐹𝐺𝐵 𝑠𝑖𝑛 60° −  3 𝑐𝑜𝑠 30° =  0    𝐹𝐺𝐵 =  3.00 𝑘𝑁 (𝐶)  

+↗  ∑ 𝐹𝑥 = 0 ;  8 −  3 sin 30 ° −  3.00 cos 60 ° −  𝐹𝐺𝐹 =  0  𝐹𝐺𝐹 =  5.00 𝑘𝑁 (𝐶) 

Joint B, Fig. d. 

+↑  ∑ 𝐹𝑌 = 0 ;  𝐹𝐵𝐹 sin 60 ° −  3.00 sin 30 ° =  0   

𝐹𝐵𝐹 =  1.73 𝑘𝑁 (𝑇)   

+→   ∑ 𝐹𝑥 = 0 ;   𝐹𝐵𝐶 +  1.73 cos 60 ° +  3.00 cos 30 ° −  6.928 =  0 

𝐹𝐵𝐶 =  3.46 𝑘𝑁 (𝑇)  

 

Qn. 2: Determine the force in each member of the scissors truss shown in Fig.a. State 

whether the members are in tension or compression. The reactions at the supports are given. 

 

 

 

 

SOLUTION 

The truss will be analyzed in the 

following sequence: 

Joint E, Fig. b. Note that simultaneous solution of equations is 

avoided by the x, y axes orientation. 

+↗  ∑ 𝐹𝑌 = 0 ;  191.0 cos 30 ° −  𝐹𝐸𝐷 sin 15 ° =  0   
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𝐹𝐸𝐷 =  639.1 𝑙𝑏 (𝐶)  

+↘ ∑ 𝐹𝑥 = 0 ;  639.1 cos 15 ° −  𝐹𝐸𝐹 −  191.0 sin 30 ° =  0  

𝐹𝐸𝐹 =  521.8 𝑙𝑏 (𝑇) 

Joint D, Fig. c. 

∑ 𝐹𝑥 = 0 ;  −𝐹𝐷𝐹 sin 75 ° =  0  

𝐹𝐷𝐹 =  0 

∑ 𝐹𝑌 = 0 ;   −𝐹𝐷𝐶 +  639.1 =  0 𝐹𝐷𝐶 =  639.1 𝑙𝑏 (𝐶) 

Joint C, Fig. d. 

∑ 𝐹𝑥 = 0 ;   𝐹𝐶𝐵 sin 45 ° −  639.1 sin 45 ° =  0  

 𝐹𝐶𝐵 =  639.1 𝑙𝑏 (𝐶) 

∑ 𝐹𝑌 = 0 ;   −𝐹𝐶𝐹 −  175 +  21639.12 cos 45 ° =  0  

 𝐹𝐶𝐹 =  728.8 𝑙𝑏 (𝑇) 

Joint B, Fig. e. 

∑ 𝐹𝑌 = 0 ;   𝐹𝐵𝐹 sin 75 ° −  200 =  0 

 𝐹𝐵𝐹 =  207.1 𝑙𝑏 (𝐶) 

∑ 𝐹𝑥 = 0 ;   639.1 +  207.1 cos 75 ° −  𝐹𝐵𝐴 =  0   

𝐹𝐵𝐴 =  692.7 𝑙𝑏 (𝐶) 

Joint A, Fig. f. 

∑ 𝐹𝑥 = 0 ;    𝐹𝐴𝐹 cos 30 ° −  692.7 cos 45 ° −  141.4 =  0   
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𝐹𝐴𝐹 =  728.9 𝑙𝑏 (𝑇) 

∑ 𝐹𝑌 = 0 ;   125.4 −  692.7 𝑠𝑖𝑛 45° +  728.9 𝑠𝑖𝑛 30° =  0   

 

Solve: 

Determine the force in each member of the truss. State if the members are in tension or 

compression. 

 

 

 

  



65 

 

MODULE 3       CHAPTER 16 

SESSION 28 

Learning objectives 

Students will be able to understand 

• Problems of Trusses by methods of sections. 

PROBLEMS 

Qn. 1 : Determine the force in members GJ and CO of the roof truss shown in the photo. 

The dimensions and loadings are shown in Fig. a. State whether the members are in tension 

or compression. The reactions at the supports have been calculated. 

SOLUTION 

  

 

 

 

Member CF. 

Free-Body Diagram. The force in member GJ can be 

obtained by considering the section aa in Fig.a.The free-

body diagram of the right part of this section is shown in 

Fig.b.  

A direct solution for can be obtained by applying 

∑ 𝑀𝐼 = 0  

−𝐹𝐺𝐽 sin 30 °(6) +  300(3.464) =  0 

𝐹𝐺𝐽  =  346 𝑙𝑏 (𝐶) 
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Member GC. 

Free-Body Diagram. The force in CO can be obtained by using section bb in Fig. a. The 

free-body diagram of the left portion of the section is shown in Fig. c. 

Equations of Equilibrium. Moments will be summed about point A in order to eliminate the 

unknowns 𝐹𝑂𝑃 𝑎𝑛𝑑 𝐹𝐶𝐷 

∑ 𝑀𝐴 = 0  

-300(3.464) + FCO(6) = 0 

FCO = 173 lb (T) 

 

 

Qn. 2 : Determine the force in members GF and GD of the truss shown in Fig. a. State 

whether the members are in tension or compression. The reactions at the supports have 

been calculated. 

SOLUTION 

Free-Body Diagram. Section aa in Fig.a will be considered. The free-body diagram to the 

right of this section is shown in Fig.b. The distance EO can be determined by proportional 

triangles or realizing that member GF drops vertically 4.5 - 3 = 1.5 m in 3 m, Fig. a Hence 

to drop 4.5 m from G the distance from C to O must be 9 m.Also, the angles that FGD and 

FGF make with the horizontal are tan−1 4.5

3
=  56.3° 𝑎𝑛𝑑 tan−1 4.5

9
=  26.6° respectively. 
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Equations of Equilibrium. The force in GF can be determined directly by applying  ∑ 𝑀𝐷 =

0  For the calculation use the principle of transmissibility and slide FGF to point O.Thus  

∑ 𝑀𝐷 = 0  

−𝐹𝐺𝐹 sin 26.6 °(6) +  7(3) =  0 

FGF = 7.83 kN  

The force in GD is determined directly by applying ∑ 𝑀𝑂 = 0, For simplicity use the 

principle of transmissibility and slide FGD  to D. 

Hence, -7(3) + 2(6) + FGD sin 56.3°(6) = 0 

FGD = 1.80 kN (C) 

 

 

Solve 

Determine the force in members BC and MC of the K-truss shown in Fig. a. State whether 

the members are in tension or compression. The reactions at the supports have been 

calculated. 
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MODULE 4       CHAPTER 17 

SESSION 29 

Learning objectives 

Students will be able to understand 

• What is Influence line diagram. 

• What are its uses. 

17.1 Influence Lines 

Structures such as bridges and overhead cranes must be designed to resist moving loads as 

well as their own weight. Since structures are designed for the critical loads that may occur 

in them, influence lines are used to obtain the position on a structure where a moving load 

will cause the largest stress. Influence lines can be defined as a graph whose ordinates show 

the variation of the magnitude of a certain response function of a structure as a unit load 

traverses across the structure. 

17.1.1 Influence Lines for Beams by Static Equilibrium Method 

To grasp the basic concept of influence lines, consider the simple beam shown in Figure 

below. Statics help to determine the magnitude of the reactions at supports A and B, and the 

shearing force and bending moment at a section n, as a unit load of arbitrary unit, moves 

from right to left. 

 

 

 Beam Reactions; 

Taking the moment about B as the unit load moves a distance x from the right-hand end 

suggests the following: 
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Setting P = 1 suggests the following: 

 

Equation is the expression for the computation of the influence line for the left-end reaction 

of a simply supported beam. The influence line for RA can be represented graphically by 

putting some values of x into the equation. Since the equation is linear, two points should 

be enough. 

When x = 0, RA = 0 

When x = L, RA = 1 

The graphical representation of the influence line for RA is shown in Figure below, and the 

ordinate of the diagram corresponding to any value of x gives the magnitude of RA at that 

point. 

 

Similarly, the expression for the influence line for the reaction RB is found by taking the 

moment about A. 

 

Setting P = 1 into equation above suggests the following: 

 

This equation is the expression for the computation of the influence line for the right-end 

reaction of a simply supported beam. Substituting some values for x into the equation helps 

to construct the influence line diagram for RB. 

When x = 0, RB = 1 

When x = L, RB = 0 

The graphical representation of the influence line for RB is shown in figure below. 
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Shearing Force at Section n 

When the unit load is on the right side of the section, the shear force at the section can be 

computed considering the transverse forces on the left side of the section, as follows: 

 

When the unit load is on the left side of the section, it is easier to compute the shear force in 

the section by considering the forces on the right side of section, as follows: 

 

 

 

Bending Moment at a Section n 

When the unit load is on the right side of the section, the bending moment at the section can 

be computed as follows: 

 

When the unit load is on the left side of section, the bending moment at the section can be 

computed as follows: 
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MODULE 4       CHAPTER 18 

SESSION 30 

 

18.1 Influence Line Diagram for simply supported beam 

 

        A 

 

 

 

Influence Line for Left End Support Reaction RA 

 

Influence Line for Right End Support Reaction RB  

 

 Influence Line for Shearing Force at 

Section n 

 

 

 

 

 Influence Line for Bending Moment at 

Section n 
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Q: - A simply supported beam of span 10m carries a udl of 20 kN/m over its central 

4m length. With the help of influence line diagram, find the shear force at 3m from 

the left support. 

 

Q: - A single rolling load of  100  kN  moves  on  a  girder  of  span  20m. 

(a) Construct the influence lines for (i) shear force and (ii) bending moment for a 

section 5m from the left support. 

(b) Construct the influence lines for points at which the maximum shears and 

maximum bending moment develop. Determine these values. 

Solution: 

(a) To find maximum shear force and bending moment at 5m from the left support:  

(i)  Maximum positive shear force 

By inspection of the ILD for shear force, it is evident that maximum positive shear force 

occurs when the load is placed just to the right of D.  

Maximum positive shear force = load * ordinate = 100 * 7.5 

At D, SFmax + = 75 kN.  

(ii) Maximum negative shear force 

Maximum negative shear force occurs when the load is placed just to the left D.  

Maximum negative shear force = load * ordinate = 100 * 0.25 At D, SFmax = -25 kN. 

(iii) Maximum bending moment  

Maximum bending moment occurs when the load is placed on the section D itself. 

Maximum bending moment = load * ordinate = 100 * 3.75 = 375 kNm 

(b)  Maximum positive shear force will occur at A. Maximum negative shear force will 

occur at B. Maximum bending moment will occur at mid span. The ILs are sketched in fig. 

(i)  Positive shear force 
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Maximum positive shear force occurs when the load is placed at A. Maximum positive 

shear force = load * ordinate = 100*1 

SFmaxmax + = 100 kN  

(ii) Negative shear force 

Maximum negative shear force occurs when the load is placed at B. Maximum negative 

shear force = load * ordinate = 100 * (-1) 

SFmaxmax = - 100 kN  

(iii) Maximum bending moment 

Maximum bending moment occurs when the load is at mid span Maximum bending 

moment = load * ordinate = 100 * 5 = 500 kNm 

Q: - Draw the ILD for shear force and bending moment for a section at 5m from the 

left hand support of a simply supported beam, 20m long. Hence, calculate the 

maximum bending moment and shear force at the section, due to a uniformly 

distributed rolling load of length 8m and intensity 10 kN/m run. 

Solution: 

(a) Maximum bending moment: 

  

Maximum bending moment at a D due to a udl shorter than the span occurs when the 

section divides the load in the same ratio as it divides the span. 

  

 

(b) Maximum positive shear force 

Maximum positive shear force occurs when the tail of the UDL is at D as it traverses from 

left to right. 
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(c) Maximum negative shear force 

Maximum negative shear force occurs when the head of the UDL is at D as it traverses 

from left to right.  

Maximum negative shear force = Intensity of load * Area of ILD under the load = 

10(1/2*0.25*5) 

Negative SFmax = 6.25 kN. 
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MODULE 4       CHAPTER 19 

SESSION 31 

19.1 Influence Line Diagram for doubly Overhanging beams 

Q: - For the double overhanging beam shown in Figure (a) below, construct the 

influence lines for the support reactions at B and C and the shearing force and the 

bending moment at section n. 

 

Solution 

I.L. for By. 

Step 1. At the position of support B (point B), plot an ordinate +1. 

Step 2. Draw a straight line connecting the plotted point (+1) to the zero ordinate at the 

position of support C. 

Step 3. Continue the straight line in step 2 until the end of the overhangs at both ends of the 

beam. The influence line for By is shown in Figure b. 

Step 4. Determine the ordinates of the influence line at the overhanging ends using a similar 

triangle, as follows: 

Ordinate at A: 

 

Ordinate at D: 

 

I.L. for Cy. 

Step 1. At the position of support C (point C), plot an ordinate +1. 

https://eng.libretexts.org/Bookshelves/Civil_Engineering/Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.09%3A_Influence_Lines_for_Statically_Determinate_Structures#fig9-5
https://eng.libretexts.org/Bookshelves/Civil_Engineering/Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.09%3A_Influence_Lines_for_Statically_Determinate_Structures#fig9-5
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Step 2. Draw a straight line connecting the plotted point (+1) to the zero ordinate at the 

position of support B. 

Step 3. Continue the straight line in step 2 until the end of the overhangs at both ends of the 

beam. The influence line for By is shown in Figure c. 

Step 4. Determine the ordinates of the influence line at the overhanging ends using a similar 

triangle, as follows: 

Ordinate at D: 

 

Ordinate at A: 

 

I.L. for shear Vn. 

Step 1. At the position of support B (point B), plot an ordinate +1. 

Step 2. Draw a straight line connecting the plotted point (+1) to the zero ordinate at the 

position of support C. Continue the straight line at C until the end of the overhang at end D. 

Step 3. At the position of support C (point C), plot an ordinate –1. 

Step 4. Draw a straight line connecting the plotted point (–1) to the zero ordinate at the 

position of support B. Continue the straight line at B until the end of the overhang at end A. 

Step 5. Draw a vertical passing through the section whose shear is required to intersect the 

lines in step 2 and step 3. 

Step 6. Connect the intersections to obtain the influence line, as shown in Figure d. 

Step 7. Determine the ordinates of the influence lines at other points by using similar 

triangles, as previously demonstrated. 

I.L. for Moment Mn. 

Step 1. At point B, plot the ordinate equal +2 m. 

Step 2. Draw a straight line connecting the plotted ordinate in step 1 to the zero ordinate in 

support C. 

Step 3. At point C, plot the ordinate equal +2 m. 

https://eng.libretexts.org/Bookshelves/Civil_Engineering/Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.09%3A_Influence_Lines_for_Statically_Determinate_Structures#fig9-5
https://eng.libretexts.org/Bookshelves/Civil_Engineering/Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.09%3A_Influence_Lines_for_Statically_Determinate_Structures#fig9-5
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Step 4. Draw a straight line connecting the plotted ordinate in step 3 to the zero ordinate at 

support B. 

Step 5. Continue the straight lines from the intersection of the lines drawn in steps 2 and 4 

through the supports to the overhanging ends, as shown in Figure e. 

Step 6. Determine the values of the influence lines at other points using similar triangles, as 

previously demonstrated. 

 

 

 

 

 

 

https://eng.libretexts.org/Bookshelves/Civil_Engineering/Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.09%3A_Influence_Lines_for_Statically_Determinate_Structures#fig9-5
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MODULE 4       CHAPTER 19 

SESSION 32 

19.2 Influence Line Diagram for singly Overhanging beams 

Q: - For the beam with one end overhanging support B, as shown in Figure(a), 

construct the influence lines for the bending moment at support B, the shear force at 

support B, the support reactions at B and C, and the shearing force and the bending 

moment at a section “k.” 

 

Solution:- 

 

 

https://eng.libretexts.org/Bookshelves/Civil_Engineering/Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.09%3A_Influence_Lines_for_Statically_Determinate_Structures#fig9-6
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Q: Using influence line diagrams determine the shear force and bending moment at 

section C in the simply supported beam shown in Figure (a) 

Solution:  

S.F. at C: Influence line diagram for shear force at C is as shown in Figure (b). 

 

 

 

 

 

     (a) 

 

(b) 

 

     (c) 
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MODULE 4       CHAPTER 20 

SESSION 33 

20.1 Uniformly Distributed Load Longer Than the Span: 

Let a uniformly distributed load of intensity w move from left to right. 

(a) Maximum S.F. and B.M. at given sections Load intensity times the area of ILD over 

loaded length gives the value of stress resultant (SF/BM).  

Negative S.F. is maximum, when the load covers portion AC only. 
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20.2 Uniformly Distributed Load Smaller Than the Span: 
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MODULE 4       CHAPTER 20 

SESSION 34 

 

Q: A simply supported beam has a span of 15 m. Uniformly distributed load of 40 

kN/m and 5 m long crosses the girder from left to right. Draw the influence line 

diagram for shear force and bending moment at a section 6 m from left end. Use these 

diagrams to calculate the maximum shear force and bending moment at this section. 

 

      (a) 

The beam is shown in Figure (a). For point C, which is at 6 m from 4, ILD for shear force F 

and bending moment M are to be found. 

 

ILD for F: ILD ordinate at just to the left of C is 
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ILD ordinate at just to right of C 

    = 
𝐿−𝑧

𝐿
=

15−6

15
= 0.6 

ILD for F is as shown in Figure 5.14(b). 

 

At C, negative S.F. is maximum when the head of load touches C. At this time, tail of the 

udl is at a distance of 1 m from 4 as shown in Figure. Ordinate under tail end of load is 

 

For maximum moment, load position should be such that the section divides the load in the 

same ratio as it divides the span. Referring to Figure. 
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MODULE 4       CHAPTER 21 

SESSION 35 

21.1 A Train of Concentrated Loads 

A train of concentrated loads moving over a simply supported beam from left 

to right is shown in Fig. 

 

It is required to find 

(a) Maximum shear force at C 

(b) Maximum bending moment at C 

(c) Absolute maximum shear force in the beam 

(d) Absolute maximum bending moment in the beam. 

(a) Maximum shear force at C: Influence line diagram for shear force at C is 

shown in Figure. As soon as W1 enters the span negative shear force develops 

at C. It increases as the load moves on. Some more loads may enter the span 

and hence, the rate of increase in S.F. goes up. This will continue till the load 

W1, reaches the section C. As soon as W1 crosses section C it contributes to 

positive shear, thus, reducing the negative shear. Hence, there will be a drop in 

shear force value. Further movement causes more increase in shear force till 

the second load reaches C. There is a second peak value and a sudden drop, 

when the second load crosses. Thus, shear force will have a peak value 

whenever a load is on the section. Highest value among these peak values is to 

be selected. By two or three trial values, it is possible to get maximum 

negative shear force value. It is to be noted that for maximum negative shear 

force, most of the loads are to the left of the section. 
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Similarly, for maximum positive shear force, there are peak values whenever a 

load comes on the section and the maximum value is obtained when most of 

the loads are to the right of the section. 

(b) Maximum bending moment: Let R, be the resultant of the loads on the left 

of the section and R, be resultant of the loads on the right of the section. 

Distance between R, and R, be d and R, be at a distance x from C. 

Let ordinate of ILD for moment at Chey, under R, and y, under R, and 

maximum ordinate at C be yc.

 

i.e., the average load on the left-side portion of the beam is same as the average load on the 

right- side portion of the beam. But seldom we get exactly equal average load on both sides 

of the section. For example, when load W, is to the left of the section, the average load on 

left side may be heavier. When it just rolls over the section, the average load on right-hand 

side may become heavier. Hence, the above condition for maximum bending moment can 

be interpreted as the bending moment is maximum when that load is on the section. 

Thus, due to a train of moving loads on a simply supported beam, maximum moment at the 

given section develops when the load W, is on the section where the load W, is such that as 

it rolls on the section and comes to the other side, heavier portion of the beam becomes 

lighter and lighter portion becomes heavier. 



89 

 

In case of some load entering and some leaving the span, the change of portion heavier 

becoming lighter and lighter portion becoming heavier may happen under more than one 

particular load. All such cases are to be considered to identify which position gives 

maximum moment at the section. 

 

Obviously, maximum shear force occurs when one of the load is on support A. When the 

load starts moving from left to right, contribution of leading loads to shear force at A 

decreases but more number of loads may come on the beam and they will contribute to 

additional shear. However, no general conclusions can be drawn to say whether increase 

due to additional load is more or decrease due to the reduced contribution from leading 

loads is more. It needs a few trials to arrive at conclusions. However, it can be definitely 

said that one of the loads should be on the support A to get absolute maximum positive SF. 

Similarly, to get absolute maximum negative shear force, one of the loads should be on 

support B (just to the left of the section) and a few trials may be required to get absolute 

maximum negative shear force which occurs at support B. 
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(e) Absolute maximum bending moment Influence line diagram ordinate for bending 

moment is maximum at the center of span. Hence, bending moment will be maximum near 

the center of the span when heavier loads are near to the center. Since, the maximum 

moment always occurs under a wheel load, it can be concluded that absolute maximum 

moment occurs under one of the loads when the resultant of all the loads and the load under 

consideration are equidistant from the center of the beam. The maximum moment under 

possible loads can be evaluated and the maximum of these selected as absolute maximum. 
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MODULE 4       CHAPTER 21 

SESSION 36 

 

Q: Four-point loads, 8, 15, 15 and 10 kN have centre to centre spacing of 2 m between 

consecutive loads and they traverse a girder of 30 m span from left to right with 10 kN 

load lending. Calculate the maximum bending moment and shear force at 8 m from 

the left support. 

 

Solution:  

The beam is shown in Figure 5.19. ILD for shear force at 8 m from left support is shown in 

Figure along with possible load position for maximum negative shear force. Maximum 

negative SF at C. 
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MODULE 5       CHAPTER 22 

SESSION 37 

22.1 Three-Hinged Arch: 

A three-hinged arch is a geometrically stable and statically determinate structure. It consists 

of two curved members connected by an internal hinge at the crown and is supported by 

two hinges at its base. Sometimes, a tie is provided at the support level or at an elevated 

position in the arch to increase the stability of the structure. 

1 Derivation of Equations for the Determination of Internal Forces in a Three-

Hinged Arch 

Consider the section Q in the three-hinged arch shown in Figure 6.2a. The three internal 

forces at the section are the axial force, NQ, the radial shear force, VQ, and the bending 

moment, MQ. The derivation of the equations for the determination of these forces with 

respect to the angle φ are as follows: 

 

Bending moment at point Q. 

Mφ = Ayx−Axy = Mb
(x)−Ax y 
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MODULE 5       CHAPTER 22 

SESSION 38 

22.1 Analysis for Static Loads: 

Consider a three-hinged arch subjected to loads as shown in Figure. Since, the ends are 

hinged there will be two reaction components at each end namely vertical and horizontal. 

Hence, totally there are four reaction components namely, VA. HA, VB and HB. 

 

For any plane structure there are three independent equations of equilibrium which can be 

used conveniently. 

 

In this case, the fourth equation is also available, i.e. 

Mc =0, Since C is a hinge 

If no horizontal load is acting, which is the usual case, Equation gives HA=HB say H. In 

such case, the following three equations are used. 

 

Since, the loads tend to spread the arch, the horizontal thrust is in the inward direction as 

shown in the figure. 
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Now, consider a section at D, 

Let V, be the vertical shear 

Q, the radial shear 

and 

N, the normal thrust. 

All these forces are shown in their positive senses in Figure. Let the normal to the section 

make an angle θ with the horizontal. 

 

The moment at D can be obtained by considering all the forces including the reaction on 

any one part of the arch. Sagging moment M is taken as positive moment here. 
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MODULE 5       CHAPTER 23 

SESSION 39 

23.1 Bending Moment Diagrams 

 In the arch, at any section D (x, y), the bending moment may be looked as a sum of 

the moment in an equivalent beam minus the ordinate time the horizontal thrust. Thus, 

M = Beam moment – Hy 

 

Figure (a) A typical arch 

 

 

 Figure (c) Bending Moment Diagram 
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MODULE 5       CHAPTER 23 

SESSION 40 

23.1 Influence Line Diagrams 

 

Consider the three-hinged arch of span L and rise a shown in Figure 7.20. The influence 

line diagrams for following are discussed in this section. 

1. For horizontal thrust H 

2. Moment at section D 

3. Normal thrust at D 

4. Radial shear at D 

where D is the point at distance from the left support A. 
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MODULE 5       CHAPTER 23 

SESSION 41 
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